汇集或不汇集:在分组分析中考虑未参加任务的情况

IF 2.8 3区 经济学 Q1 ECONOMICS
Juan Marcos Gonzalez , F. Reed Johnson , Eric Finkelstein
{"title":"汇集或不汇集:在分组分析中考虑未参加任务的情况","authors":"Juan Marcos Gonzalez ,&nbsp;F. Reed Johnson ,&nbsp;Eric Finkelstein","doi":"10.1016/j.jocm.2024.100487","DOIUrl":null,"url":null,"abstract":"<div><p>Pooling data from different subgroups offers advantages of shrinking standard errors and simplifying characterization of the data structure. The ability to pool data also facilitates meta-analysis to evaluate consensus among multiple studies and to inform benefit transfer to new choice settings. Testing for poolability requires accounting for differences in response variance or scale among subgroups. This is commonly done by assuming a single scale factor within each subgroup of interest. This assumption may not hold for many subgroups, especially when task non-attendance is present. We use data from a prior DCE study to show that task non-attendance, and by extension the assumption of a single scale factor across subgroups, can lead to inaccurate conclusions when determining poolability. To address this concern, we propose a latent-class/random-parameters Logit (LCRP) model specification that accommodates task non-attendance or other causes of scale differences within subgroups and directly tests for poolability.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"51 ","pages":"Article 100487"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To pool or not to pool: Accounting for task non-attendance in subgroup analysis\",\"authors\":\"Juan Marcos Gonzalez ,&nbsp;F. Reed Johnson ,&nbsp;Eric Finkelstein\",\"doi\":\"10.1016/j.jocm.2024.100487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pooling data from different subgroups offers advantages of shrinking standard errors and simplifying characterization of the data structure. The ability to pool data also facilitates meta-analysis to evaluate consensus among multiple studies and to inform benefit transfer to new choice settings. Testing for poolability requires accounting for differences in response variance or scale among subgroups. This is commonly done by assuming a single scale factor within each subgroup of interest. This assumption may not hold for many subgroups, especially when task non-attendance is present. We use data from a prior DCE study to show that task non-attendance, and by extension the assumption of a single scale factor across subgroups, can lead to inaccurate conclusions when determining poolability. To address this concern, we propose a latent-class/random-parameters Logit (LCRP) model specification that accommodates task non-attendance or other causes of scale differences within subgroups and directly tests for poolability.</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"51 \",\"pages\":\"Article 100487\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534524000198\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534524000198","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

汇集来自不同亚组的数据具有缩小标准误差和简化数据结构特征的优势。汇集数据的能力还有助于进行荟萃分析,以评估多项研究之间的共识,并为将效益转移到新的选择环境中提供信息。测试可汇集性需要考虑亚组间反应方差或规模的差异。通常的做法是在每个相关亚组内假设一个单一的规模因子。这一假设对于许多亚组来说可能并不成立,尤其是当存在不参加任务的情况时。我们利用之前一项 DCE 研究的数据来说明,在确定可汇集性时,任务不出席以及推而广之的各亚组间单一比例因子假设可能会导致不准确的结论。为了解决这个问题,我们提出了一种潜类/随机参数 Logit(LCRP)模型规范,该规范可考虑任务未出席或造成子组内规模差异的其他原因,并直接测试可集合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
To pool or not to pool: Accounting for task non-attendance in subgroup analysis

Pooling data from different subgroups offers advantages of shrinking standard errors and simplifying characterization of the data structure. The ability to pool data also facilitates meta-analysis to evaluate consensus among multiple studies and to inform benefit transfer to new choice settings. Testing for poolability requires accounting for differences in response variance or scale among subgroups. This is commonly done by assuming a single scale factor within each subgroup of interest. This assumption may not hold for many subgroups, especially when task non-attendance is present. We use data from a prior DCE study to show that task non-attendance, and by extension the assumption of a single scale factor across subgroups, can lead to inaccurate conclusions when determining poolability. To address this concern, we propose a latent-class/random-parameters Logit (LCRP) model specification that accommodates task non-attendance or other causes of scale differences within subgroups and directly tests for poolability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信