考虑固结和温度影响的非饱和土壤污染物迁移模型的解析解

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Guo-qing Cai , Feng-jie Yin , Shi-jie Guo , Qian-qian Liu , Yi Liu
{"title":"考虑固结和温度影响的非饱和土壤污染物迁移模型的解析解","authors":"Guo-qing Cai ,&nbsp;Feng-jie Yin ,&nbsp;Shi-jie Guo ,&nbsp;Qian-qian Liu ,&nbsp;Yi Liu","doi":"10.1016/j.jconhyd.2024.104326","DOIUrl":null,"url":null,"abstract":"<div><p>The migration behavior of pollutants is affected by consolidation and temperature when using thermal desorption technology to clean contaminated sites. Based on a one-dimensional consolidation model for unsaturated soil and the traditional heat conduction equation, a pollutant transport model accounting for the combined effects of consolidation and temperature was established in this paper. An analytical solution was obtained by using the separation of variables method and the integral transformation method. In addition, the correctness of the proposed model was verified via a comparison between the existing analytical solution and the theoretical model. Finally, adopting benzene as the research object, the influence of different factors on pollutant migration was studied. It was found that the growth rate of the pollutant concentration increased with increasing consolidation pressure, and the final pollutant concentration decreased with increasing consolidation pressure. The pollutant concentration increment due to temperature first increased and then decreased with increasing migration distance. The higher the Soret coefficient and volumetric moisture content are, the higher the pollutant concentration.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"262 ","pages":"Article 104326"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solution of a pollutant transport model for unsaturated soil considering the effects of consolidation and temperature\",\"authors\":\"Guo-qing Cai ,&nbsp;Feng-jie Yin ,&nbsp;Shi-jie Guo ,&nbsp;Qian-qian Liu ,&nbsp;Yi Liu\",\"doi\":\"10.1016/j.jconhyd.2024.104326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The migration behavior of pollutants is affected by consolidation and temperature when using thermal desorption technology to clean contaminated sites. Based on a one-dimensional consolidation model for unsaturated soil and the traditional heat conduction equation, a pollutant transport model accounting for the combined effects of consolidation and temperature was established in this paper. An analytical solution was obtained by using the separation of variables method and the integral transformation method. In addition, the correctness of the proposed model was verified via a comparison between the existing analytical solution and the theoretical model. Finally, adopting benzene as the research object, the influence of different factors on pollutant migration was studied. It was found that the growth rate of the pollutant concentration increased with increasing consolidation pressure, and the final pollutant concentration decreased with increasing consolidation pressure. The pollutant concentration increment due to temperature first increased and then decreased with increasing migration distance. The higher the Soret coefficient and volumetric moisture content are, the higher the pollutant concentration.</p></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"262 \",\"pages\":\"Article 104326\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000305\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000305","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用热解吸技术清理污染场地时,污染物的迁移行为会受到固结和温度的影响。本文基于非饱和土壤的一维固结模型和传统的热传导方程,建立了一个考虑固结和温度综合影响的污染物迁移模型。利用变量分离法和积分变换法获得了解析解。此外,通过比较现有的解析解和理论模型,验证了所提模型的正确性。最后,以苯为研究对象,研究了不同因素对污染物迁移的影响。研究发现,污染物浓度的增长率随固结压力的增加而增加,最终污染物浓度随固结压力的增加而降低。随着迁移距离的增加,温度引起的污染物浓度增量先增加后减少。索雷特系数和体积含水量越高,污染物浓度越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solution of a pollutant transport model for unsaturated soil considering the effects of consolidation and temperature

The migration behavior of pollutants is affected by consolidation and temperature when using thermal desorption technology to clean contaminated sites. Based on a one-dimensional consolidation model for unsaturated soil and the traditional heat conduction equation, a pollutant transport model accounting for the combined effects of consolidation and temperature was established in this paper. An analytical solution was obtained by using the separation of variables method and the integral transformation method. In addition, the correctness of the proposed model was verified via a comparison between the existing analytical solution and the theoretical model. Finally, adopting benzene as the research object, the influence of different factors on pollutant migration was studied. It was found that the growth rate of the pollutant concentration increased with increasing consolidation pressure, and the final pollutant concentration decreased with increasing consolidation pressure. The pollutant concentration increment due to temperature first increased and then decreased with increasing migration distance. The higher the Soret coefficient and volumetric moisture content are, the higher the pollutant concentration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信