Rush 回归工作台:用于医疗分析中回归建模和分析的集成开源应用程序

Kenneth Locey, Ryan Schipfer, Brittnie Dotson
{"title":"Rush 回归工作台:用于医疗分析中回归建模和分析的集成开源应用程序","authors":"Kenneth Locey,&nbsp;Ryan Schipfer,&nbsp;Brittnie Dotson","doi":"10.1016/j.health.2024.100314","DOIUrl":null,"url":null,"abstract":"<div><p>Regression is widely used in healthcare analytics, whether for examining hospital quality and safety, characterizing patterns of patient volume and healthcare costs, or predicting patient outcomes. Simple linear regression and other basic forms can be conducted with spreadsheet programs and are useful for examining simple linear relationships. However, expert statistical knowledge, computational skills, and specialized tools may be needed to characterize nonlinear relationships and complex interactions, to examine data that fail the assumptions of linear regression, to identify confounding variables and lessen the influence of outliers, and to build and evaluate predictive models. We constructed the Rush Regression Workbench to accomplish these tasks and to automate cautious and sophisticated analyses, provide interpretive outputs, enable reproducible results, and to provide the community with an evolving open-source good containing a diverse set of analyses and a growing library of over 170 preprocessed public healthcare datasets. The Rush Regression Workbench can be accessed via the web or downloaded and used locally.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100314"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000169/pdfft?md5=b965966466f281ccad7767a8dc87cbcb&pid=1-s2.0-S2772442524000169-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rush regression workbench: An integrated open-source application for regression modeling and analysis in healthcare analytics\",\"authors\":\"Kenneth Locey,&nbsp;Ryan Schipfer,&nbsp;Brittnie Dotson\",\"doi\":\"10.1016/j.health.2024.100314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regression is widely used in healthcare analytics, whether for examining hospital quality and safety, characterizing patterns of patient volume and healthcare costs, or predicting patient outcomes. Simple linear regression and other basic forms can be conducted with spreadsheet programs and are useful for examining simple linear relationships. However, expert statistical knowledge, computational skills, and specialized tools may be needed to characterize nonlinear relationships and complex interactions, to examine data that fail the assumptions of linear regression, to identify confounding variables and lessen the influence of outliers, and to build and evaluate predictive models. We constructed the Rush Regression Workbench to accomplish these tasks and to automate cautious and sophisticated analyses, provide interpretive outputs, enable reproducible results, and to provide the community with an evolving open-source good containing a diverse set of analyses and a growing library of over 170 preprocessed public healthcare datasets. The Rush Regression Workbench can be accessed via the web or downloaded and used locally.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000169/pdfft?md5=b965966466f281ccad7767a8dc87cbcb&pid=1-s2.0-S2772442524000169-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回归被广泛应用于医疗分析中,无论是检查医院质量和安全、描述患者数量和医疗成本模式,还是预测患者预后。简单的线性回归和其他基本形式的回归可以通过电子表格程序进行,对于检查简单的线性关系非常有用。然而,要描述非线性关系和复杂的相互作用,检查不符合线性回归假设的数据,识别混杂变量和减少异常值的影响,以及建立和评估预测模型,可能需要专业的统计知识、计算技能和专用工具。我们构建了 Rush 回归工作台来完成这些任务,并将谨慎而复杂的分析自动化,提供解释性输出,实现结果的可重复性,并为社区提供一个不断发展的开源工具,其中包含一系列不同的分析和一个不断扩大的、包含 170 多个预处理公共医疗保健数据集的库。Rush 回归工作台可通过网络访问,也可下载并在本地使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rush regression workbench: An integrated open-source application for regression modeling and analysis in healthcare analytics

Regression is widely used in healthcare analytics, whether for examining hospital quality and safety, characterizing patterns of patient volume and healthcare costs, or predicting patient outcomes. Simple linear regression and other basic forms can be conducted with spreadsheet programs and are useful for examining simple linear relationships. However, expert statistical knowledge, computational skills, and specialized tools may be needed to characterize nonlinear relationships and complex interactions, to examine data that fail the assumptions of linear regression, to identify confounding variables and lessen the influence of outliers, and to build and evaluate predictive models. We constructed the Rush Regression Workbench to accomplish these tasks and to automate cautious and sophisticated analyses, provide interpretive outputs, enable reproducible results, and to provide the community with an evolving open-source good containing a diverse set of analyses and a growing library of over 170 preprocessed public healthcare datasets. The Rush Regression Workbench can be accessed via the web or downloaded and used locally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信