多变量指数多项式的稳定恢复和模型还原

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Juan Manuel Peña , Tomas Sauer
{"title":"多变量指数多项式的稳定恢复和模型还原","authors":"Juan Manuel Peña ,&nbsp;Tomas Sauer","doi":"10.1016/j.jsc.2024.102313","DOIUrl":null,"url":null,"abstract":"<div><p>Recovery of multivariate exponential polynomials, i.e., the multivariate version of Prony's problem, can be stabilized by using more than the minimally needed multiinteger samples of the function. We present an algorithm that takes into account this extra information and prove a backward error estimate for the algebraic recovery method SMILE. In addition, we give a method to approximate data by an exponential polynomial sequence of a given structure as a step in the direction of multivariate model reduction.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000178/pdfft?md5=a03807abfc64e6721e202a9e27a5dbdf&pid=1-s2.0-S0747717124000178-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stabilized recovery and model reduction for multivariate exponential polynomials\",\"authors\":\"Juan Manuel Peña ,&nbsp;Tomas Sauer\",\"doi\":\"10.1016/j.jsc.2024.102313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recovery of multivariate exponential polynomials, i.e., the multivariate version of Prony's problem, can be stabilized by using more than the minimally needed multiinteger samples of the function. We present an algorithm that takes into account this extra information and prove a backward error estimate for the algebraic recovery method SMILE. In addition, we give a method to approximate data by an exponential polynomial sequence of a given structure as a step in the direction of multivariate model reduction.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000178/pdfft?md5=a03807abfc64e6721e202a9e27a5dbdf&pid=1-s2.0-S0747717124000178-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000178\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000178","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

多变量指数多项式的复原,即 Prony 问题的多变量版本,可以通过使用比最小需要的多整数函数样本更多的样本来稳定。我们提出了一种考虑到这些额外信息的算法,并证明了代数恢复方法 SMILE 的后向误差估计。此外,我们还给出了一种用给定结构的指数多项式序列来近似数据的方法,作为多变量模型还原方向上的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilized recovery and model reduction for multivariate exponential polynomials

Recovery of multivariate exponential polynomials, i.e., the multivariate version of Prony's problem, can be stabilized by using more than the minimally needed multiinteger samples of the function. We present an algorithm that takes into account this extra information and prove a backward error estimate for the algebraic recovery method SMILE. In addition, we give a method to approximate data by an exponential polynomial sequence of a given structure as a step in the direction of multivariate model reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信