{"title":"多变量指数多项式的稳定恢复和模型还原","authors":"Juan Manuel Peña , Tomas Sauer","doi":"10.1016/j.jsc.2024.102313","DOIUrl":null,"url":null,"abstract":"<div><p>Recovery of multivariate exponential polynomials, i.e., the multivariate version of Prony's problem, can be stabilized by using more than the minimally needed multiinteger samples of the function. We present an algorithm that takes into account this extra information and prove a backward error estimate for the algebraic recovery method SMILE. In addition, we give a method to approximate data by an exponential polynomial sequence of a given structure as a step in the direction of multivariate model reduction.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000178/pdfft?md5=a03807abfc64e6721e202a9e27a5dbdf&pid=1-s2.0-S0747717124000178-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stabilized recovery and model reduction for multivariate exponential polynomials\",\"authors\":\"Juan Manuel Peña , Tomas Sauer\",\"doi\":\"10.1016/j.jsc.2024.102313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recovery of multivariate exponential polynomials, i.e., the multivariate version of Prony's problem, can be stabilized by using more than the minimally needed multiinteger samples of the function. We present an algorithm that takes into account this extra information and prove a backward error estimate for the algebraic recovery method SMILE. In addition, we give a method to approximate data by an exponential polynomial sequence of a given structure as a step in the direction of multivariate model reduction.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000178/pdfft?md5=a03807abfc64e6721e202a9e27a5dbdf&pid=1-s2.0-S0747717124000178-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000178\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000178","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Stabilized recovery and model reduction for multivariate exponential polynomials
Recovery of multivariate exponential polynomials, i.e., the multivariate version of Prony's problem, can be stabilized by using more than the minimally needed multiinteger samples of the function. We present an algorithm that takes into account this extra information and prove a backward error estimate for the algebraic recovery method SMILE. In addition, we give a method to approximate data by an exponential polynomial sequence of a given structure as a step in the direction of multivariate model reduction.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.