{"title":"构建各种脂质载体,研究盐酸西诺明的透皮渗透机制。","authors":"Mengyao Cui, Yaqing Li, Jing Li, Nini Jia, Wenxuan Cao, Zhengguang Li, Xiang Li, Xiaoqin Chu","doi":"10.1080/02652048.2024.2324810","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE).</p><p><strong>Methods: </strong>SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin.</p><p><strong>Results: </strong>The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively.</p><p><strong>Conclusion: </strong>SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"157-169"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride.\",\"authors\":\"Mengyao Cui, Yaqing Li, Jing Li, Nini Jia, Wenxuan Cao, Zhengguang Li, Xiang Li, Xiaoqin Chu\",\"doi\":\"10.1080/02652048.2024.2324810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE).</p><p><strong>Methods: </strong>SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin.</p><p><strong>Results: </strong>The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively.</p><p><strong>Conclusion: </strong>SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"157-169\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2024.2324810\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2324810","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
目的研究盐酸西诺明(SN)的透皮机制,并比较固体脂质纳米颗粒(SLN)、脂质体(LS)和纳米乳液(NE)透皮给药的差异:方法:分别采用超声、乙醇注射和自发乳化法制备了盐酸西诺明(SN-SLN)、盐酸西诺明(SN-LS)和盐酸西诺明(SN-NE)。采用傅立叶变换红外光谱(FTIR)、电导率分析(DSC)、体外皮肤渗透、活化能(Ea)分析等方法探讨药物在皮肤中的渗透机理:结果:SN-SLN、SN-LS和SN-LS的粒径和封装效率分别为126.60 nm、43.23 ± 0.48%(w/w);SN-SLN、SN-LS和SN-LS的粒径和封装效率分别为224.90 nm、78.31 ± 0.75%(w/w);SN-SLN、SN-LS和SN-LS的粒径和封装效率分别为83.22 nm、89.01 ± 2.16%(w/w)。傅立叶变换红外光谱和 DSC 显示,这些制剂对角质层脂质结构有不同程度的影响,影响程度依次为 SLN > NE > LS。SN-SLN、SN-LS 和 SN-NE 穿过皮肤的 Ea 值分别为 2.504、1.161 和 2.510 kcal/mol:结论:SLN 对皮肤角质层的改变程度更大,从而使 SN 更有效地渗透皮肤。
Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride.
Objective: To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE).
Methods: SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin.
Results: The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively.
Conclusion: SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.