{"title":"细胞内脂肪酶和脂滴的调节。","authors":"Ainara G Cabodevilla, Ni Son, Ira J Goldberg","doi":"10.1097/MOL.0000000000000918","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Lipid droplets are increasingly recognized as distinct intracellular organelles that have functions exclusive to the storage of energetic lipids. Lipid droplets modulate macrophage inflammatory phenotype, control the availability of energy for muscle function, store excess lipid, sequester toxic lipids, modulate mitochondrial activity, and allow transfer of fatty acids between tissues.</p><p><strong>Recent findings: </strong>There have been several major advances in our understanding of the formation, dissolution, and function of this organelle during the past two years. These include new information on movement and partition of amphipathic proteins between the cytosol and lipid droplet surface, molecular determinants of lipid droplet formation, and pathways leading to lipid droplet hydrophobic lipid formation. Rapid advances in mitochondrial biology have also begun to define differences in their function and partnering with lipid droplets to modulate lipid storage versus oxidation.</p><p><strong>Summary: </strong>This relationship of lipid droplets biology and cellular function provides new understanding of an important cellular organelle that influences muscle function, adipose lipid storage, and diseases of lipotoxicity.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":"35 2","pages":"85-92"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intracellular lipase and regulation of the lipid droplet.\",\"authors\":\"Ainara G Cabodevilla, Ni Son, Ira J Goldberg\",\"doi\":\"10.1097/MOL.0000000000000918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Lipid droplets are increasingly recognized as distinct intracellular organelles that have functions exclusive to the storage of energetic lipids. Lipid droplets modulate macrophage inflammatory phenotype, control the availability of energy for muscle function, store excess lipid, sequester toxic lipids, modulate mitochondrial activity, and allow transfer of fatty acids between tissues.</p><p><strong>Recent findings: </strong>There have been several major advances in our understanding of the formation, dissolution, and function of this organelle during the past two years. These include new information on movement and partition of amphipathic proteins between the cytosol and lipid droplet surface, molecular determinants of lipid droplet formation, and pathways leading to lipid droplet hydrophobic lipid formation. Rapid advances in mitochondrial biology have also begun to define differences in their function and partnering with lipid droplets to modulate lipid storage versus oxidation.</p><p><strong>Summary: </strong>This relationship of lipid droplets biology and cellular function provides new understanding of an important cellular organelle that influences muscle function, adipose lipid storage, and diseases of lipotoxicity.</p>\",\"PeriodicalId\":11109,\"journal\":{\"name\":\"Current opinion in lipidology\",\"volume\":\"35 2\",\"pages\":\"85-92\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in lipidology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MOL.0000000000000918\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in lipidology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOL.0000000000000918","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intracellular lipase and regulation of the lipid droplet.
Purpose of review: Lipid droplets are increasingly recognized as distinct intracellular organelles that have functions exclusive to the storage of energetic lipids. Lipid droplets modulate macrophage inflammatory phenotype, control the availability of energy for muscle function, store excess lipid, sequester toxic lipids, modulate mitochondrial activity, and allow transfer of fatty acids between tissues.
Recent findings: There have been several major advances in our understanding of the formation, dissolution, and function of this organelle during the past two years. These include new information on movement and partition of amphipathic proteins between the cytosol and lipid droplet surface, molecular determinants of lipid droplet formation, and pathways leading to lipid droplet hydrophobic lipid formation. Rapid advances in mitochondrial biology have also begun to define differences in their function and partnering with lipid droplets to modulate lipid storage versus oxidation.
Summary: This relationship of lipid droplets biology and cellular function provides new understanding of an important cellular organelle that influences muscle function, adipose lipid storage, and diseases of lipotoxicity.
期刊介绍:
With its easy-to-digest reviews on important advances in world literature, Current Opinion in Lipidology offers expert evaluation on a wide range of topics from six key disciplines including nutrition and metabolism, genetics and molecular biology, and hyperlipidaemia and cardiovascular disease. Published bimonthly, each issue covers in detail the most pertinent advances in these fields from the previous year. This is supplemented by a section of Bimonthly Updates, which deliver an insight into new developments at the cutting edge of the disciplines covered in the journal.