N 个网格的几何解析

IF 2.1 1区 数学 Q1 MATHEMATICS
M. Heuer, M. Jotz
{"title":"N 个网格的几何解析","authors":"M. Heuer,&nbsp;M. Jotz","doi":"10.1016/j.matpur.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a <em>geometrisation</em> of <span><math><mi>N</mi></math></span>-manifolds of degree <em>n</em> as <em>n</em>-fold vector bundles equipped with a (signed) <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-symmetry. More precisely, it proves an equivalence between the categories of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifolds and the category of (signed) symmetric <em>n</em>-fold vector bundles, by finding that symmetric <em>n</em>-fold vector bundle cocycles and <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifold cocycles are identical.</p><p>This extends the already known equivalences of [1]-manifolds with vector bundles, and of [2]-manifolds with involutive double vector bundles, where the involution is understood as an <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-action.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"184 ","pages":"Pages 1-70"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000254/pdfft?md5=f674935c74ae1cfa9abff704eba87938&pid=1-s2.0-S0021782424000254-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A geometrisation of N-manifolds\",\"authors\":\"M. Heuer,&nbsp;M. Jotz\",\"doi\":\"10.1016/j.matpur.2024.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a <em>geometrisation</em> of <span><math><mi>N</mi></math></span>-manifolds of degree <em>n</em> as <em>n</em>-fold vector bundles equipped with a (signed) <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-symmetry. More precisely, it proves an equivalence between the categories of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifolds and the category of (signed) symmetric <em>n</em>-fold vector bundles, by finding that symmetric <em>n</em>-fold vector bundle cocycles and <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifold cocycles are identical.</p><p>This extends the already known equivalences of [1]-manifolds with vector bundles, and of [2]-manifolds with involutive double vector bundles, where the involution is understood as an <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-action.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"184 \",\"pages\":\"Pages 1-70\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000254/pdfft?md5=f674935c74ae1cfa9abff704eba87938&pid=1-s2.0-S0021782424000254-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000254\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000254","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种-manifolds of degree as -fold vector bundles equipped with a (signed) -symmetry.更确切地说,它通过发现对称-折叠向量束循环和-曼弗雷德循环是相同的,证明了-曼弗雷德范畴和(带符号)对称-折叠向量束范畴之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometrisation of N-manifolds

This paper proposes a geometrisation of N-manifolds of degree n as n-fold vector bundles equipped with a (signed) Sn-symmetry. More precisely, it proves an equivalence between the categories of [n]-manifolds and the category of (signed) symmetric n-fold vector bundles, by finding that symmetric n-fold vector bundle cocycles and [n]-manifold cocycles are identical.

This extends the already known equivalences of [1]-manifolds with vector bundles, and of [2]-manifolds with involutive double vector bundles, where the involution is understood as an S2-action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信