{"title":"N 个网格的几何解析","authors":"M. Heuer, M. Jotz","doi":"10.1016/j.matpur.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a <em>geometrisation</em> of <span><math><mi>N</mi></math></span>-manifolds of degree <em>n</em> as <em>n</em>-fold vector bundles equipped with a (signed) <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-symmetry. More precisely, it proves an equivalence between the categories of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifolds and the category of (signed) symmetric <em>n</em>-fold vector bundles, by finding that symmetric <em>n</em>-fold vector bundle cocycles and <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifold cocycles are identical.</p><p>This extends the already known equivalences of [1]-manifolds with vector bundles, and of [2]-manifolds with involutive double vector bundles, where the involution is understood as an <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-action.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"184 ","pages":"Pages 1-70"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000254/pdfft?md5=f674935c74ae1cfa9abff704eba87938&pid=1-s2.0-S0021782424000254-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A geometrisation of N-manifolds\",\"authors\":\"M. Heuer, M. Jotz\",\"doi\":\"10.1016/j.matpur.2024.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a <em>geometrisation</em> of <span><math><mi>N</mi></math></span>-manifolds of degree <em>n</em> as <em>n</em>-fold vector bundles equipped with a (signed) <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-symmetry. More precisely, it proves an equivalence between the categories of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifolds and the category of (signed) symmetric <em>n</em>-fold vector bundles, by finding that symmetric <em>n</em>-fold vector bundle cocycles and <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>-manifold cocycles are identical.</p><p>This extends the already known equivalences of [1]-manifolds with vector bundles, and of [2]-manifolds with involutive double vector bundles, where the involution is understood as an <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-action.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"184 \",\"pages\":\"Pages 1-70\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000254/pdfft?md5=f674935c74ae1cfa9abff704eba87938&pid=1-s2.0-S0021782424000254-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000254\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000254","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种-manifolds of degree as -fold vector bundles equipped with a (signed) -symmetry.更确切地说,它通过发现对称-折叠向量束循环和-曼弗雷德循环是相同的,证明了-曼弗雷德范畴和(带符号)对称-折叠向量束范畴之间的等价性。
This paper proposes a geometrisation of -manifolds of degree n as n-fold vector bundles equipped with a (signed) -symmetry. More precisely, it proves an equivalence between the categories of -manifolds and the category of (signed) symmetric n-fold vector bundles, by finding that symmetric n-fold vector bundle cocycles and -manifold cocycles are identical.
This extends the already known equivalences of [1]-manifolds with vector bundles, and of [2]-manifolds with involutive double vector bundles, where the involution is understood as an -action.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.