论普朗特边界层的非线性不稳定性:瑞利稳定剪切流的情况

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Emmanuel Grenier , Toan T. Nguyen
{"title":"论普朗特边界层的非线性不稳定性:瑞利稳定剪切流的情况","authors":"Emmanuel Grenier ,&nbsp;Toan T. Nguyen","doi":"10.1016/j.matpur.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>In 1904, Prandtl introduced his famous boundary layer in order to describe the behavior of solutions of Navier Stokes equations near a boundary as the viscosity goes to 0. His Ansatz has later been justified for analytic data by R.E. Caflisch and M. Sammartino. In this paper, we prove that his expansion is false, up to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>)</mo></math></span> order terms in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm, in the case of solutions with Sobolev regularity, even in cases where the Prandlt's equation is well posed in Sobolev spaces.</p><p>In addition, we also prove that monotonic boundary layer profiles, which are stable when <span><math><mi>ν</mi><mo>=</mo><mn>0</mn></math></span>, are nonlinearly unstable when <span><math><mi>ν</mi><mo>&gt;</mo><mn>0</mn></math></span>, provided <em>ν</em> is small enough, up to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>)</mo></math></span> terms in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nonlinear instability of Prandtl's boundary layers: The case of Rayleigh's stable shear flows\",\"authors\":\"Emmanuel Grenier ,&nbsp;Toan T. Nguyen\",\"doi\":\"10.1016/j.matpur.2024.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1904, Prandtl introduced his famous boundary layer in order to describe the behavior of solutions of Navier Stokes equations near a boundary as the viscosity goes to 0. His Ansatz has later been justified for analytic data by R.E. Caflisch and M. Sammartino. In this paper, we prove that his expansion is false, up to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>)</mo></math></span> order terms in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm, in the case of solutions with Sobolev regularity, even in cases where the Prandlt's equation is well posed in Sobolev spaces.</p><p>In addition, we also prove that monotonic boundary layer profiles, which are stable when <span><math><mi>ν</mi><mo>=</mo><mn>0</mn></math></span>, are nonlinearly unstable when <span><math><mi>ν</mi><mo>&gt;</mo><mn>0</mn></math></span>, provided <em>ν</em> is small enough, up to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>)</mo></math></span> terms in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

1904 年,普朗特提出了著名的边界层,以描述纳维-斯托克斯方程的解在边界附近粘度为 0 时的行为。在本文中,我们证明在具有索博廖夫正则性的解的情况下,即使普朗特方程在索博廖夫空间中假设良好,他的扩展也是错误的,最多只能扩展到规范的阶次项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On nonlinear instability of Prandtl's boundary layers: The case of Rayleigh's stable shear flows

In 1904, Prandtl introduced his famous boundary layer in order to describe the behavior of solutions of Navier Stokes equations near a boundary as the viscosity goes to 0. His Ansatz has later been justified for analytic data by R.E. Caflisch and M. Sammartino. In this paper, we prove that his expansion is false, up to O(ν1/4) order terms in L norm, in the case of solutions with Sobolev regularity, even in cases where the Prandlt's equation is well posed in Sobolev spaces.

In addition, we also prove that monotonic boundary layer profiles, which are stable when ν=0, are nonlinearly unstable when ν>0, provided ν is small enough, up to O(ν1/4) terms in L norm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信