Shuguang Li, Z. Asghar, M. Waqas, Hala A. Hejazi, M. Zubair, Dilsora Abduvalieva
{"title":"以磁流体力学为特征的布昂乔诺纳米流体模型的流变学和计算分析","authors":"Shuguang Li, Z. Asghar, M. Waqas, Hala A. Hejazi, M. Zubair, Dilsora Abduvalieva","doi":"10.1142/s0217979225500080","DOIUrl":null,"url":null,"abstract":"<p>This research captures nonlinear thermo-solutal buoyancy (i.e., nonlinear mixed convection) impact in nanofluid flow based on magnetized Casson model. The generalized porosity concept (i.e., Darcy–Forchheimer relationship) is employed by considering incompressible liquid that saturates the porous space. Effects of thermophoresis, Robin conditions, thermo-solutal stratifications and Brownian diffusion are accounted. Consideration of transpiration phenomenon captures suction/injection aspects. Fluid mechanics basic laws are depleted to simplify the governing rheological expressions. A transformation procedure is then employed to convert the nonlinear governing partial systems into differential systems. Homotopy methodology is used to obtain analytical solutions and convergence is ensured. Graphical and tabular outcomes are presented to address the importance of emerging variables.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"15 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rheological and computational analysis on Buongiorno nanofluid model featuring magnetohydrodynamics\",\"authors\":\"Shuguang Li, Z. Asghar, M. Waqas, Hala A. Hejazi, M. Zubair, Dilsora Abduvalieva\",\"doi\":\"10.1142/s0217979225500080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research captures nonlinear thermo-solutal buoyancy (i.e., nonlinear mixed convection) impact in nanofluid flow based on magnetized Casson model. The generalized porosity concept (i.e., Darcy–Forchheimer relationship) is employed by considering incompressible liquid that saturates the porous space. Effects of thermophoresis, Robin conditions, thermo-solutal stratifications and Brownian diffusion are accounted. Consideration of transpiration phenomenon captures suction/injection aspects. Fluid mechanics basic laws are depleted to simplify the governing rheological expressions. A transformation procedure is then employed to convert the nonlinear governing partial systems into differential systems. Homotopy methodology is used to obtain analytical solutions and convergence is ensured. Graphical and tabular outcomes are presented to address the importance of emerging variables.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500080\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500080","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A rheological and computational analysis on Buongiorno nanofluid model featuring magnetohydrodynamics
This research captures nonlinear thermo-solutal buoyancy (i.e., nonlinear mixed convection) impact in nanofluid flow based on magnetized Casson model. The generalized porosity concept (i.e., Darcy–Forchheimer relationship) is employed by considering incompressible liquid that saturates the porous space. Effects of thermophoresis, Robin conditions, thermo-solutal stratifications and Brownian diffusion are accounted. Consideration of transpiration phenomenon captures suction/injection aspects. Fluid mechanics basic laws are depleted to simplify the governing rheological expressions. A transformation procedure is then employed to convert the nonlinear governing partial systems into differential systems. Homotopy methodology is used to obtain analytical solutions and convergence is ensured. Graphical and tabular outcomes are presented to address the importance of emerging variables.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.