Ma Huaijin, Jin Xiang, Gao Lei, Zhao Jing, Xing Ru, Yun Huiqin, Zhao Jianjun
{"title":"La0.65Ca0.35-xGdxMnO3 (0≤x≤0.15) 的磁致效应和临界行为","authors":"Ma Huaijin, Jin Xiang, Gao Lei, Zhao Jing, Xing Ru, Yun Huiqin, Zhao Jianjun","doi":"10.1142/s0217979224504368","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate the magnetocaloric effects (MCE) and critical behavior of Gd-doped La<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mn>5</mn></mrow></msub></math></span><span></span>Ca<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span><span></span>Gd<sub><i>x</i></sub>MnO<sub>3</sub> (<span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) polycrystalline materials. Our results reveal excellent MCE in the Gd-doped samples. Under a magnetic field of 7<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>T, the full-width at half maximum (<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">FWHM</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> increases from 41<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 121<span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 112<span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>). Additionally, the refrigerant capacity (RC) is enhanced by 149% and 145% at <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>, respectively, compared to the parent phase. We propose that these improvements can be attributed to the introduction of Gd<span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span><span></span> ions, which possess smaller ionic radii. This reduction in the average A-site ionic radius weakens the double exchange (DE) interactions, resulting in a more continuous phase transition within the system. Supporting this view, we observe a decrease in magnetization strength after doping, a reduction in Curie temperature (<span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> from 250<span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 134<span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 130<span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) and a transformation from a first-order to a second-order phase transition in the doped samples. To characterize the critical behavior of the phase transition in the doped samples, we employ the K-F method. The obtained critical exponents for <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span> are <span><math altimg=\"eq-00030.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mn>8</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>6</mn></math></span><span></span>, <span><math altimg=\"eq-00031.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mn>2</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00032.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mn>8</mn><mn>2</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>5</mn></math></span><span></span> and <span><math altimg=\"eq-00033.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mn>7</mn><mn>7</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>8</mn></math></span><span></span>, <span><math altimg=\"eq-00034.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mn>8</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>4</mn></math></span><span></span>, <span><math altimg=\"eq-00035.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn><mn>7</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>2</mn></math></span><span></span>, respectively. Furthermore, the calculation of the <i>n</i> values suggests a transition of the phase transition in the doped samples from short-range ordering to long-range ordering.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetocaloric effects and critical behavior of La0.65Ca0.35−xGdxMnO3 (0≤x≤0.15)\",\"authors\":\"Ma Huaijin, Jin Xiang, Gao Lei, Zhao Jing, Xing Ru, Yun Huiqin, Zhao Jianjun\",\"doi\":\"10.1142/s0217979224504368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we investigate the magnetocaloric effects (MCE) and critical behavior of Gd-doped La<span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mn>5</mn></mrow></msub></math></span><span></span>Ca<span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span><span></span>Gd<sub><i>x</i></sub>MnO<sub>3</sub> (<span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) polycrystalline materials. Our results reveal excellent MCE in the Gd-doped samples. Under a magnetic field of 7<span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>T, the full-width at half maximum (<span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">FWHM</mtext></mstyle></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> increases from 41<span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 121<span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 112<span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>). Additionally, the refrigerant capacity (RC) is enhanced by 149% and 145% at <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>, respectively, compared to the parent phase. We propose that these improvements can be attributed to the introduction of Gd<span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span><span></span> ions, which possess smaller ionic radii. This reduction in the average A-site ionic radius weakens the double exchange (DE) interactions, resulting in a more continuous phase transition within the system. Supporting this view, we observe a decrease in magnetization strength after doping, a reduction in Curie temperature (<span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> from 250<span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 134<span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 130<span><math altimg=\\\"eq-00026.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00027.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) and a transformation from a first-order to a second-order phase transition in the doped samples. To characterize the critical behavior of the phase transition in the doped samples, we employ the K-F method. The obtained critical exponents for <span><math altimg=\\\"eq-00028.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00029.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span> are <span><math altimg=\\\"eq-00030.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mn>8</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>6</mn></math></span><span></span>, <span><math altimg=\\\"eq-00031.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mn>2</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>3</mn></math></span><span></span>, <span><math altimg=\\\"eq-00032.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>δ</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mn>8</mn><mn>2</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>5</mn></math></span><span></span> and <span><math altimg=\\\"eq-00033.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mn>7</mn><mn>7</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>8</mn></math></span><span></span>, <span><math altimg=\\\"eq-00034.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mn>8</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>4</mn></math></span><span></span>, <span><math altimg=\\\"eq-00035.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>δ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn><mn>7</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>2</mn></math></span><span></span>, respectively. Furthermore, the calculation of the <i>n</i> values suggests a transition of the phase transition in the doped samples from short-range ordering to long-range ordering.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224504368\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979224504368","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Magnetocaloric effects and critical behavior of La0.65Ca0.35−xGdxMnO3 (0≤x≤0.15)
In this study, we investigate the magnetocaloric effects (MCE) and critical behavior of Gd-doped LaCaGdxMnO3 () polycrystalline materials. Our results reveal excellent MCE in the Gd-doped samples. Under a magnetic field of 7T, the full-width at half maximum ( increases from 41K () to 121K () and 112K (). Additionally, the refrigerant capacity (RC) is enhanced by 149% and 145% at and , respectively, compared to the parent phase. We propose that these improvements can be attributed to the introduction of Gd ions, which possess smaller ionic radii. This reduction in the average A-site ionic radius weakens the double exchange (DE) interactions, resulting in a more continuous phase transition within the system. Supporting this view, we observe a decrease in magnetization strength after doping, a reduction in Curie temperature ( from 250K () to 134K () and 130K () and a transformation from a first-order to a second-order phase transition in the doped samples. To characterize the critical behavior of the phase transition in the doped samples, we employ the K-F method. The obtained critical exponents for and are , , and , , , respectively. Furthermore, the calculation of the n values suggests a transition of the phase transition in the doped samples from short-range ordering to long-range ordering.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.