以 Zwitterion-Capped-ZnO 量子点为电子传输层、NH4X(X = F、Cl、Br)辅助界面工程的高性能 Perovskite 太阳能电池

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rashmi Runjhun, Essa A. Alharbi, Zygmunt Drużyński, Anurag Krishna, Małgorzata Wolska-Pietkiewicz, Viktor Škorjanc, Thomas P. Baumeler, George Kakavelakis, Felix Eickemeyer, Mounir Mensi, Shaik M. Zakeeruddin, Michael Graetzel, Janusz Lewiński
{"title":"以 Zwitterion-Capped-ZnO 量子点为电子传输层、NH4X(X = F、Cl、Br)辅助界面工程的高性能 Perovskite 太阳能电池","authors":"Rashmi Runjhun,&nbsp;Essa A. Alharbi,&nbsp;Zygmunt Drużyński,&nbsp;Anurag Krishna,&nbsp;Małgorzata Wolska-Pietkiewicz,&nbsp;Viktor Škorjanc,&nbsp;Thomas P. Baumeler,&nbsp;George Kakavelakis,&nbsp;Felix Eickemeyer,&nbsp;Mounir Mensi,&nbsp;Shaik M. Zakeeruddin,&nbsp;Michael Graetzel,&nbsp;Janusz Lewiński","doi":"10.1002/eem2.12720","DOIUrl":null,"url":null,"abstract":"<p>The systematic advances in the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs) have been driven by the developments of perovskite materials, electron transport layer (ETL) materials, and interfacial passivation between the relevant layers. While zinc oxide (ZnO) is a promising ETL in thin film photovoltaics, it is still highly desirable to develop novel synthetic methods that allow both fine-tuning the versatility of ZnO nanomaterials and improving the ZnO/perovskite interface. Among various inorganic and organic additives, zwitterions have been effectively utilized to passivate the perovskite films. In this vein, we develop novel, well-characterized betaine-coated ZnO QDs and use them as an ETL in the planar n-i-p PSC architecture, combining the ZnO QDs-based ETL with the ZnO/perovskite interface passivation by a series of ammonium halides (NH<sub>4</sub>X, where X = F, Cl, Br). The champion device with the NH<sub>4</sub>F passivation achieves one of the highest performances reported for ZnO-based PSCs, exhibiting a maximum PCE of ~22% with a high fill factor of 80.3% and competitive stability, retaining ~78% of its initial PCE under 1 Sun illumination with maximum power tracking for 250 h.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12720","citationCount":"0","resultStr":"{\"title\":\"High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering\",\"authors\":\"Rashmi Runjhun,&nbsp;Essa A. Alharbi,&nbsp;Zygmunt Drużyński,&nbsp;Anurag Krishna,&nbsp;Małgorzata Wolska-Pietkiewicz,&nbsp;Viktor Škorjanc,&nbsp;Thomas P. Baumeler,&nbsp;George Kakavelakis,&nbsp;Felix Eickemeyer,&nbsp;Mounir Mensi,&nbsp;Shaik M. Zakeeruddin,&nbsp;Michael Graetzel,&nbsp;Janusz Lewiński\",\"doi\":\"10.1002/eem2.12720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The systematic advances in the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs) have been driven by the developments of perovskite materials, electron transport layer (ETL) materials, and interfacial passivation between the relevant layers. While zinc oxide (ZnO) is a promising ETL in thin film photovoltaics, it is still highly desirable to develop novel synthetic methods that allow both fine-tuning the versatility of ZnO nanomaterials and improving the ZnO/perovskite interface. Among various inorganic and organic additives, zwitterions have been effectively utilized to passivate the perovskite films. In this vein, we develop novel, well-characterized betaine-coated ZnO QDs and use them as an ETL in the planar n-i-p PSC architecture, combining the ZnO QDs-based ETL with the ZnO/perovskite interface passivation by a series of ammonium halides (NH<sub>4</sub>X, where X = F, Cl, Br). The champion device with the NH<sub>4</sub>F passivation achieves one of the highest performances reported for ZnO-based PSCs, exhibiting a maximum PCE of ~22% with a high fill factor of 80.3% and competitive stability, retaining ~78% of its initial PCE under 1 Sun illumination with maximum power tracking for 250 h.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12720\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12720\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12720","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

包晶体材料、电子传输层(ETL)材料以及相关层之间的界面钝化技术的发展,推动了包晶体太阳能电池(PSCs)在功率转换效率(PCE)和稳定性方面的系统性进步。虽然氧化锌(ZnO)是薄膜光伏领域前景广阔的电子传输层材料,但开发新的合成方法,既能微调氧化锌纳米材料的多功能性,又能改善氧化锌/过氧化物界面,仍然是非常可取的。在各种无机和有机添加剂中,齐聚物已被有效地用于钝化过氧化物薄膜。为此,我们开发了新型、特性良好的甜菜碱涂层氧化锌 QD,并将其用作平面 ni-i-p PSC 结构中的 ETL,将基于氧化锌 QD 的 ETL 与一系列卤化铵(NH4X,其中 X = F、Cl、Br)的氧化锌/过氧化物界面钝化相结合。采用 NH4F 钝化技术的冠军器件实现了 ZnO 基 PSC 的最高性能之一,其最大 PCE 约为 22%,填充因子高达 80.3%,而且具有极高的稳定性,在 1 Sun 照明条件下最大功率跟踪 250 小时,其初始 PCE 可保持约 78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering

High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering

High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering

The systematic advances in the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs) have been driven by the developments of perovskite materials, electron transport layer (ETL) materials, and interfacial passivation between the relevant layers. While zinc oxide (ZnO) is a promising ETL in thin film photovoltaics, it is still highly desirable to develop novel synthetic methods that allow both fine-tuning the versatility of ZnO nanomaterials and improving the ZnO/perovskite interface. Among various inorganic and organic additives, zwitterions have been effectively utilized to passivate the perovskite films. In this vein, we develop novel, well-characterized betaine-coated ZnO QDs and use them as an ETL in the planar n-i-p PSC architecture, combining the ZnO QDs-based ETL with the ZnO/perovskite interface passivation by a series of ammonium halides (NH4X, where X = F, Cl, Br). The champion device with the NH4F passivation achieves one of the highest performances reported for ZnO-based PSCs, exhibiting a maximum PCE of ~22% with a high fill factor of 80.3% and competitive stability, retaining ~78% of its initial PCE under 1 Sun illumination with maximum power tracking for 250 h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信