相对等级和正则化

IF 1.2 2区 数学 Q1 MATHEMATICS
Amichai Lampert, Tamar Ziegler
{"title":"相对等级和正则化","authors":"Amichai Lampert, Tamar Ziegler","doi":"10.1017/fms.2024.15","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new concept of rank – <span>relative rank</span> associated to a filtered collection of polynomials. When the filtration is trivial, our relative rank coincides with <span>Schmidt rank</span> (also called <span>strength</span>). We also introduce the notion of <span>relative bias</span>. The main result of the paper is a relation between these two quantities over finite fields (as a special case, we obtain a new proof of the results in [21]). This relation allows us to get an accurate estimate for the number of points on an affine variety given by a collection of polynomials which is of high relative rank (Lemma 3.2). The key advantage of relative rank is that it allows one to perform an efficient regularization procedure which is <span>polynomial</span> in the initial number of polynomials (the regularization process with Schmidt rank is far worse than tower exponential). The main result allows us to replace Schmidt rank with relative rank in many key applications in combinatorics, algebraic geometry, and algebra. For example, we prove that any collection of polynomials <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal P=(P_i)_{i=1}^c$</span></span></img></span></span> of degrees <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\le d$</span></span></img></span></span> in a polynomial ring over an algebraically closed field of characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$&gt;d$</span></span></img></span></span> is contained in an ideal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal I({\\mathcal Q})$</span></span></img></span></span>, generated by a collection <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal Q}$</span></span></img></span></span> of polynomials of degrees <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\le d$</span></span></img></span></span> which form a regular sequence, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal Q}$</span></span></img></span></span> is of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\le A c^{A}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$A=A(d)$</span></span></img></span></span> is independent of the number of variables.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative rank and regularization\",\"authors\":\"Amichai Lampert, Tamar Ziegler\",\"doi\":\"10.1017/fms.2024.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new concept of rank – <span>relative rank</span> associated to a filtered collection of polynomials. When the filtration is trivial, our relative rank coincides with <span>Schmidt rank</span> (also called <span>strength</span>). We also introduce the notion of <span>relative bias</span>. The main result of the paper is a relation between these two quantities over finite fields (as a special case, we obtain a new proof of the results in [21]). This relation allows us to get an accurate estimate for the number of points on an affine variety given by a collection of polynomials which is of high relative rank (Lemma 3.2). The key advantage of relative rank is that it allows one to perform an efficient regularization procedure which is <span>polynomial</span> in the initial number of polynomials (the regularization process with Schmidt rank is far worse than tower exponential). The main result allows us to replace Schmidt rank with relative rank in many key applications in combinatorics, algebraic geometry, and algebra. For example, we prove that any collection of polynomials <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal P=(P_i)_{i=1}^c$</span></span></img></span></span> of degrees <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\le d$</span></span></img></span></span> in a polynomial ring over an algebraically closed field of characteristic <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$&gt;d$</span></span></img></span></span> is contained in an ideal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal I({\\\\mathcal Q})$</span></span></img></span></span>, generated by a collection <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal Q}$</span></span></img></span></span> of polynomials of degrees <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\le d$</span></span></img></span></span> which form a regular sequence, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal Q}$</span></span></img></span></span> is of size <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\le A c^{A}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305102827475-0522:S205050942400015X:S205050942400015X_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$A=A(d)$</span></span></img></span></span> is independent of the number of variables.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.15\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.15","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个新的秩概念--与多项式滤波集合相关的相对秩。当过滤是微不足道时,我们的相对秩与施密特秩(也称为强度)重合。我们还引入了相对偏置的概念。本文的主要结果是有限域上这两个量之间的关系(作为特例,我们获得了 [21] 中结果的新证明)。通过这一关系,我们可以精确估计由高相对秩的多项式集合给出的仿射集合上的点数(定理 3.2)。相对秩的主要优势在于,它允许我们执行一个有效的正则化过程,而这个过程是初始多项式数量的多项式(施密特秩的正则化过程远不如塔指数)。在组合学、代数几何和代数学的许多关键应用中,主要结果允许我们用相对秩代替施密特秩。例如,我们证明在特征为 $>;d$ 包含在一个理想$\mathcal I({\mathcal Q})$中,这个理想是由一个度数为$\le d$的多项式集合${\mathcal Q}$产生的,这些多项式组成了一个规则序列,并且${\mathcal Q}$的大小为$\le A c^{A}$,其中$A=A(d)$与变量的个数无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative rank and regularization

We introduce a new concept of rank – relative rank associated to a filtered collection of polynomials. When the filtration is trivial, our relative rank coincides with Schmidt rank (also called strength). We also introduce the notion of relative bias. The main result of the paper is a relation between these two quantities over finite fields (as a special case, we obtain a new proof of the results in [21]). This relation allows us to get an accurate estimate for the number of points on an affine variety given by a collection of polynomials which is of high relative rank (Lemma 3.2). The key advantage of relative rank is that it allows one to perform an efficient regularization procedure which is polynomial in the initial number of polynomials (the regularization process with Schmidt rank is far worse than tower exponential). The main result allows us to replace Schmidt rank with relative rank in many key applications in combinatorics, algebraic geometry, and algebra. For example, we prove that any collection of polynomials $\mathcal P=(P_i)_{i=1}^c$ of degrees $\le d$ in a polynomial ring over an algebraically closed field of characteristic $>d$ is contained in an ideal $\mathcal I({\mathcal Q})$, generated by a collection ${\mathcal Q}$ of polynomials of degrees $\le d$ which form a regular sequence, and ${\mathcal Q}$ is of size $\le A c^{A}$, where $A=A(d)$ is independent of the number of variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信