使用卷积神经网络进行深度伪造检测的方法

IF 0.4 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE
S. S. Volkova
{"title":"使用卷积神经网络进行深度伪造检测的方法","authors":"S. S. Volkova","doi":"10.3103/s0147688223050143","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract—</h3><p>This paper proposes a method of countering spoofing attacks by improving the resilience of face-based biometric authentication systems to digital face manipulation attacks on the biometric input module. The proposed method of digital face manipulation detection (deepfake detection) is based on a convolutional neural network trained on a large dataset containing various types of manipulations, images of different quality, and a large number of identities and as a result achieves an accuracy of at least 99%. Experiment results also indicate high performance of the proposed approach compared to other available methods tested on the same dataset. The method can be used to improve the security of biometric authentication systems by reducing the risk of unauthorized access.</p>","PeriodicalId":43962,"journal":{"name":"Scientific and Technical Information Processing","volume":"27 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Deepfake Detection Using Convolutional Neural Networks\",\"authors\":\"S. S. Volkova\",\"doi\":\"10.3103/s0147688223050143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract—</h3><p>This paper proposes a method of countering spoofing attacks by improving the resilience of face-based biometric authentication systems to digital face manipulation attacks on the biometric input module. The proposed method of digital face manipulation detection (deepfake detection) is based on a convolutional neural network trained on a large dataset containing various types of manipulations, images of different quality, and a large number of identities and as a result achieves an accuracy of at least 99%. Experiment results also indicate high performance of the proposed approach compared to other available methods tested on the same dataset. The method can be used to improve the security of biometric authentication systems by reducing the risk of unauthorized access.</p>\",\"PeriodicalId\":43962,\"journal\":{\"name\":\"Scientific and Technical Information Processing\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and Technical Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0147688223050143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and Technical Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0147688223050143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要--本文提出了一种反欺骗攻击的方法,通过提高基于人脸的生物识别身份验证系统对生物识别输入模块上的数字人脸操纵攻击的抵御能力。所提出的数字人脸操纵检测(深度伪造检测)方法基于一个卷积神经网络,该网络在一个包含各种类型的操纵、不同质量的图像和大量身份信息的大型数据集上经过训练,因此准确率至少达到 99%。实验结果还表明,与在相同数据集上测试过的其他可用方法相比,所提出的方法具有很高的性能。该方法可用于提高生物识别身份验证系统的安全性,降低未经授权访问的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Method for Deepfake Detection Using Convolutional Neural Networks

A Method for Deepfake Detection Using Convolutional Neural Networks

Abstract—

This paper proposes a method of countering spoofing attacks by improving the resilience of face-based biometric authentication systems to digital face manipulation attacks on the biometric input module. The proposed method of digital face manipulation detection (deepfake detection) is based on a convolutional neural network trained on a large dataset containing various types of manipulations, images of different quality, and a large number of identities and as a result achieves an accuracy of at least 99%. Experiment results also indicate high performance of the proposed approach compared to other available methods tested on the same dataset. The method can be used to improve the security of biometric authentication systems by reducing the risk of unauthorized access.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific and Technical Information Processing
Scientific and Technical Information Processing INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.00
自引率
42.90%
发文量
20
期刊介绍: Scientific and Technical Information Processing  is a refereed journal that covers all aspects of management and use of information technology in libraries and archives, information centres, and the information industry in general. Emphasis is on practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信