用于解决初值问题的自适应 IQ 和 IMQ-RBF:亚当斯-巴什福斯法和亚当斯-莫尔顿法

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Samala Rathan, Deepit Shah, T. Hemanth Kumar, K. Sandeep Charan
{"title":"用于解决初值问题的自适应 IQ 和 IMQ-RBF:亚当斯-巴什福斯法和亚当斯-莫尔顿法","authors":"Samala Rathan, Deepit Shah, T. Hemanth Kumar, K. Sandeep Charan","doi":"10.1142/s0219876223500329","DOIUrl":null,"url":null,"abstract":"<p>In this paper, our objective is primarily to use adaptive inverse-quadratic (IQ) and inverse-multi-quadratic (IMQ) radial basis function (RBF) interpolation techniques to develop third and fourth-order methods such as Adams–Bashforth (AB) and Adams–Moulton (AM) methods. By utilizing a free parameter involved in the RBF, the local convergence of the numerical solution is enhanced by making the local truncation error vanish. Consistency and stability analysis is presented along with some numerical results to back up our assertions. The accuracy and rate of convergence of each proposed technique are equal to or better than the original AB and AM methods by eliminating the local truncation error thus in that sense, the proposed adaptive methods are optimal. We conclude that both IQ and IMQ-RBF methods yield an improved order of convergence than classical methods, while the superiority of one method depends on the method and the problem considered.</p>","PeriodicalId":54968,"journal":{"name":"International Journal of Computational Methods","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive IQ and IMQ-RBFs for Solving Initial Value Problems: Adams–Bashforth and Adams–Moulton Methods\",\"authors\":\"Samala Rathan, Deepit Shah, T. Hemanth Kumar, K. Sandeep Charan\",\"doi\":\"10.1142/s0219876223500329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, our objective is primarily to use adaptive inverse-quadratic (IQ) and inverse-multi-quadratic (IMQ) radial basis function (RBF) interpolation techniques to develop third and fourth-order methods such as Adams–Bashforth (AB) and Adams–Moulton (AM) methods. By utilizing a free parameter involved in the RBF, the local convergence of the numerical solution is enhanced by making the local truncation error vanish. Consistency and stability analysis is presented along with some numerical results to back up our assertions. The accuracy and rate of convergence of each proposed technique are equal to or better than the original AB and AM methods by eliminating the local truncation error thus in that sense, the proposed adaptive methods are optimal. We conclude that both IQ and IMQ-RBF methods yield an improved order of convergence than classical methods, while the superiority of one method depends on the method and the problem considered.</p>\",\"PeriodicalId\":54968,\"journal\":{\"name\":\"International Journal of Computational Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Methods\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219876223500329\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219876223500329","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是利用自适应反二次(IQ)和反多二次(IMQ)径向基函数(RBF)插值技术来开发三阶和四阶方法,如亚当斯-巴什福斯(AB)和亚当斯-穆尔顿(AM)方法。通过利用 RBF 中的自由参数,使局部截断误差消失,从而增强了数值解的局部收敛性。我们提出了一致性和稳定性分析以及一些数值结果来支持我们的论断。通过消除局部截断误差,所提出的每种技术的精度和收敛速度都等于或优于原始的 AB 和 AM 方法,因此从这个意义上说,所提出的自适应方法是最优的。我们的结论是,与传统方法相比,IQ 和 IMQ-RBF 方法都能产生更好的收敛阶次,而一种方法的优劣取决于所考虑的方法和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive IQ and IMQ-RBFs for Solving Initial Value Problems: Adams–Bashforth and Adams–Moulton Methods

In this paper, our objective is primarily to use adaptive inverse-quadratic (IQ) and inverse-multi-quadratic (IMQ) radial basis function (RBF) interpolation techniques to develop third and fourth-order methods such as Adams–Bashforth (AB) and Adams–Moulton (AM) methods. By utilizing a free parameter involved in the RBF, the local convergence of the numerical solution is enhanced by making the local truncation error vanish. Consistency and stability analysis is presented along with some numerical results to back up our assertions. The accuracy and rate of convergence of each proposed technique are equal to or better than the original AB and AM methods by eliminating the local truncation error thus in that sense, the proposed adaptive methods are optimal. We conclude that both IQ and IMQ-RBF methods yield an improved order of convergence than classical methods, while the superiority of one method depends on the method and the problem considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Methods
International Journal of Computational Methods ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.30
自引率
17.60%
发文量
84
审稿时长
15 months
期刊介绍: The purpose of this journal is to provide a unique forum for the fast publication and rapid dissemination of original research results and innovative ideas on the state-of-the-art on computational methods. The methods should be innovative and of high scholarly, academic and practical value. The journal is devoted to all aspects of modern computational methods including mathematical formulations and theoretical investigations; interpolations and approximation techniques; error analysis techniques and algorithms; fast algorithms and real-time computation; multi-scale bridging algorithms; adaptive analysis techniques and algorithms; implementation, coding and parallelization issues; novel and practical applications. The articles can involve theory, algorithm, programming, coding, numerical simulation and/or novel application of computational techniques to problems in engineering, science, and other disciplines related to computations. Examples of fields covered by the journal are: Computational mechanics for solids and structures, Computational fluid dynamics, Computational heat transfer, Computational inverse problem, Computational mathematics, Computational meso/micro/nano mechanics, Computational biology, Computational penetration mechanics, Meshfree methods, Particle methods, Molecular and Quantum methods, Advanced Finite element methods, Advanced Finite difference methods, Advanced Finite volume methods, High-performance computing techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信