Kévin Robache, François G. Schmitt, Yongxiang Huang
{"title":"海洋和大气 pCO2 时间序列的缩放和间歇特性及其差异","authors":"Kévin Robache, François G. Schmitt, Yongxiang Huang","doi":"10.5194/npg-2024-7","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> In this study the multi-scale dynamics of 38 oceanic and atmospheric <em>p</em>CO<sub>2</sub> time series from fixed Eulerian buoys recorded with three-hour resolution are considered. The difference between these time series, the sea surface temperature and the sea surface salinity data were also studied. These series possess multi-scale turbulent-like fluctuations and display scaling properties from three hours to the annual scale. Scaling exponents are estimated through Fourier analysis and their average quantities considered globally for all parameters, as well as for different ecosystems (e.g. coastal shelf, coral reefs, open ocean). Sea surface temperature is the only parameter for which a spectral slope close to 5/3 is found, corresponding to a passive scalar in homogeneous and isotropic turbulence. The other parameters had smaller spectral slopes, from 1.18 to 1.35. By using empirical mode decomposition of the time series, together with generalized Hilbert spectral analysis, the intermittency of the time series was considered in the multifractal framework. Concave moment functions were estimated and Hurst index and intermittency parameters estimated in the framework of a lognormal multifractal fit. It is the first time that atmospheric and oceanic <em>p</em>CO<sub>2</sub> and their difference ∆<em>p</em>CO<sub>2</sub> are studied using such intermittent turbulence framework. The ∆<em>p</em>CO<sub>2</sub> time series was shown to possess power-law scaling with an exponent of <em>β</em> = 1.32 ± 0.2.","PeriodicalId":54714,"journal":{"name":"Nonlinear Processes in Geophysics","volume":"10 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling and intermittent properties of oceanic and atmospheric pCO2 time series and their difference\",\"authors\":\"Kévin Robache, François G. Schmitt, Yongxiang Huang\",\"doi\":\"10.5194/npg-2024-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> In this study the multi-scale dynamics of 38 oceanic and atmospheric <em>p</em>CO<sub>2</sub> time series from fixed Eulerian buoys recorded with three-hour resolution are considered. The difference between these time series, the sea surface temperature and the sea surface salinity data were also studied. These series possess multi-scale turbulent-like fluctuations and display scaling properties from three hours to the annual scale. Scaling exponents are estimated through Fourier analysis and their average quantities considered globally for all parameters, as well as for different ecosystems (e.g. coastal shelf, coral reefs, open ocean). Sea surface temperature is the only parameter for which a spectral slope close to 5/3 is found, corresponding to a passive scalar in homogeneous and isotropic turbulence. The other parameters had smaller spectral slopes, from 1.18 to 1.35. By using empirical mode decomposition of the time series, together with generalized Hilbert spectral analysis, the intermittency of the time series was considered in the multifractal framework. Concave moment functions were estimated and Hurst index and intermittency parameters estimated in the framework of a lognormal multifractal fit. It is the first time that atmospheric and oceanic <em>p</em>CO<sub>2</sub> and their difference ∆<em>p</em>CO<sub>2</sub> are studied using such intermittent turbulence framework. The ∆<em>p</em>CO<sub>2</sub> time series was shown to possess power-law scaling with an exponent of <em>β</em> = 1.32 ± 0.2.\",\"PeriodicalId\":54714,\"journal\":{\"name\":\"Nonlinear Processes in Geophysics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Processes in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/npg-2024-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Processes in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/npg-2024-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Scaling and intermittent properties of oceanic and atmospheric pCO2 time series and their difference
Abstract. In this study the multi-scale dynamics of 38 oceanic and atmospheric pCO2 time series from fixed Eulerian buoys recorded with three-hour resolution are considered. The difference between these time series, the sea surface temperature and the sea surface salinity data were also studied. These series possess multi-scale turbulent-like fluctuations and display scaling properties from three hours to the annual scale. Scaling exponents are estimated through Fourier analysis and their average quantities considered globally for all parameters, as well as for different ecosystems (e.g. coastal shelf, coral reefs, open ocean). Sea surface temperature is the only parameter for which a spectral slope close to 5/3 is found, corresponding to a passive scalar in homogeneous and isotropic turbulence. The other parameters had smaller spectral slopes, from 1.18 to 1.35. By using empirical mode decomposition of the time series, together with generalized Hilbert spectral analysis, the intermittency of the time series was considered in the multifractal framework. Concave moment functions were estimated and Hurst index and intermittency parameters estimated in the framework of a lognormal multifractal fit. It is the first time that atmospheric and oceanic pCO2 and their difference ∆pCO2 are studied using such intermittent turbulence framework. The ∆pCO2 time series was shown to possess power-law scaling with an exponent of β = 1.32 ± 0.2.
期刊介绍:
Nonlinear Processes in Geophysics (NPG) is an international, inter-/trans-disciplinary, non-profit journal devoted to breaking the deadlocks often faced by standard approaches in Earth and space sciences. It therefore solicits disruptive and innovative concepts and methodologies, as well as original applications of these to address the ubiquitous complexity in geoscience systems, and in interacting social and biological systems. Such systems are nonlinear, with responses strongly non-proportional to perturbations, and show an associated extreme variability across scales.