{"title":"量化鲁棒性:在噪声域中使用智能树进行三维树点云骨架化","authors":"","doi":"10.1007/s10044-024-01238-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Extracting tree skeletons from 3D tree point clouds is challenged by noise and incomplete data. While our prior work (Dobbs et al., in: Iberian conference on pattern recognition and image analysis, Springer, Berlin, pp. 351–362, 2023) introduced a deep learning approach for approximating tree branch medial axes, its robustness against various types of noise has not been thoroughly evaluated. This paper addresses this gap. Specifically, we simulate real-world noise challenges by introducing 3D Perlin noise (to represent subtractive noise) and Gaussian noise (to mimic additive noise). To facilitate this evaluation, we introduce a new synthetic tree point cloud dataset, available at https://github.com/uc-vision/synthetic-trees-II. Our results indicate that our deep learning-based skeletonization method is tolerant to both additive and subtractive noise.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"47 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying robustness: 3D tree point cloud skeletonization with smart-tree in noisy domains\",\"authors\":\"\",\"doi\":\"10.1007/s10044-024-01238-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Extracting tree skeletons from 3D tree point clouds is challenged by noise and incomplete data. While our prior work (Dobbs et al., in: Iberian conference on pattern recognition and image analysis, Springer, Berlin, pp. 351–362, 2023) introduced a deep learning approach for approximating tree branch medial axes, its robustness against various types of noise has not been thoroughly evaluated. This paper addresses this gap. Specifically, we simulate real-world noise challenges by introducing 3D Perlin noise (to represent subtractive noise) and Gaussian noise (to mimic additive noise). To facilitate this evaluation, we introduce a new synthetic tree point cloud dataset, available at https://github.com/uc-vision/synthetic-trees-II. Our results indicate that our deep learning-based skeletonization method is tolerant to both additive and subtractive noise.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01238-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01238-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
摘要 从三维树木点云中提取树木骨架面临着噪声和数据不完整的挑战。而我们之前的工作(Dobbs et al:Iberian conference on pattern recognition and image analysis, Springer, Berlin, pp.本文弥补了这一空白。具体来说,我们通过引入三维佩林噪声(代表减法噪声)和高斯噪声(模拟加法噪声)来模拟真实世界的噪声挑战。为了便于评估,我们引入了一个新的合成树点云数据集,该数据集可在 https://github.com/uc-vision/synthetic-trees-II 上获取。结果表明,我们基于深度学习的骨架化方法对加性和减性噪声都有很好的耐受性。
Quantifying robustness: 3D tree point cloud skeletonization with smart-tree in noisy domains
Abstract
Extracting tree skeletons from 3D tree point clouds is challenged by noise and incomplete data. While our prior work (Dobbs et al., in: Iberian conference on pattern recognition and image analysis, Springer, Berlin, pp. 351–362, 2023) introduced a deep learning approach for approximating tree branch medial axes, its robustness against various types of noise has not been thoroughly evaluated. This paper addresses this gap. Specifically, we simulate real-world noise challenges by introducing 3D Perlin noise (to represent subtractive noise) and Gaussian noise (to mimic additive noise). To facilitate this evaluation, we introduce a new synthetic tree point cloud dataset, available at https://github.com/uc-vision/synthetic-trees-II. Our results indicate that our deep learning-based skeletonization method is tolerant to both additive and subtractive noise.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.