{"title":"具有给定霍尔常内含子群的有限群","authors":"Xuanli He, Qinhui Sun, Jing Wang","doi":"10.1007/s11587-024-00850-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite group. A subgroup <i>H</i> of <i>G</i> is called Hall normally embedded in <i>G</i> if <i>H</i> is a Hall subgroup of the normal closure <span>\\(H^G\\)</span>. In this paper, we fix a subgroup <i>D</i> of Sylow <i>p</i>-subgroup <i>P</i> of <i>G</i> with <span>\\(1<|D|<|O_p(G)|\\)</span> and study the structure of <i>G</i> under the assumption that all subgroups <i>H</i> of <i>P</i> with order <span>\\(|H|=|D|\\)</span> are Hall normally embedded in <i>G</i>.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"66 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite group with given Hall normally embedded subgroups\",\"authors\":\"Xuanli He, Qinhui Sun, Jing Wang\",\"doi\":\"10.1007/s11587-024-00850-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a finite group. A subgroup <i>H</i> of <i>G</i> is called Hall normally embedded in <i>G</i> if <i>H</i> is a Hall subgroup of the normal closure <span>\\\\(H^G\\\\)</span>. In this paper, we fix a subgroup <i>D</i> of Sylow <i>p</i>-subgroup <i>P</i> of <i>G</i> with <span>\\\\(1<|D|<|O_p(G)|\\\\)</span> and study the structure of <i>G</i> under the assumption that all subgroups <i>H</i> of <i>P</i> with order <span>\\\\(|H|=|D|\\\\)</span> are Hall normally embedded in <i>G</i>.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00850-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00850-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个有限群。如果 G 的一个子群 H 是常闭 \(H^G\) 的一个霍尔子群,那么这个子群就叫做霍尔常嵌于 G。在本文中,我们将 G 的 Sylow p 子群 P 的子群 D 定为 \(1<|D|<|O_p(G)|\),并在假设 P 的所有阶为 \(|H|=|D|\)的子群 H 都是霍尔常嵌于 G 的情况下研究 G 的结构。
Finite group with given Hall normally embedded subgroups
Let G be a finite group. A subgroup H of G is called Hall normally embedded in G if H is a Hall subgroup of the normal closure \(H^G\). In this paper, we fix a subgroup D of Sylow p-subgroup P of G with \(1<|D|<|O_p(G)|\) and study the structure of G under the assumption that all subgroups H of P with order \(|H|=|D|\) are Hall normally embedded in G.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.