Xianhua Zhang, Chunlei Pei, Zhi-Jian Zhao and Jinlong Gong
{"title":"实现绿色高效的化学循环氨合成:设计原理和先进氧化还原催化剂","authors":"Xianhua Zhang, Chunlei Pei, Zhi-Jian Zhao and Jinlong Gong","doi":"10.1039/D4EE00037D","DOIUrl":null,"url":null,"abstract":"<p >Ammonia plays an essential role in agriculture and next-generation energy systems but is currently synthesized industrially through the Haber–Bosh (HB) process under harsh conditions with high CO<small><sub>2</sub></small> emissions. Chemical looping ammonia synthesis (CLAS) is an attractive alternative to the traditional HB process as it can break the Brønsted–Evans–Polanyi (BEP) scaling relationship and circumvent the competitive adsorption of N<small><sub>2</sub></small> and H<small><sub>2</sub></small> on metal catalysts by decoupling ammonia production into multiple reaction steps. The realization of highly efficient CLAS relies on developing redox catalysts with high activity at low temperatures. This review describes recent theoretical and experimental progresses in CLAS. The rational design of redox catalysts underlines the advantages of combined numerical and experimental approaches for the development of efficient redox catalysts towards green and efficient CLAS processes. Redox catalysts and external field-assisted technologies for lowering the reaction temperature and accelerating the reaction kinetics of CLAS are spotlighted, and relevant reaction mechanisms are discussed. The feasibility of the CLAS process based on the techno-economic analysis is reviewed. The challenges and opportunities of redox catalysts and reaction systems for CLAS are further discussed.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 7","pages":" 2381-2405"},"PeriodicalIF":30.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards green and efficient chemical looping ammonia synthesis: design principles and advanced redox catalysts\",\"authors\":\"Xianhua Zhang, Chunlei Pei, Zhi-Jian Zhao and Jinlong Gong\",\"doi\":\"10.1039/D4EE00037D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ammonia plays an essential role in agriculture and next-generation energy systems but is currently synthesized industrially through the Haber–Bosh (HB) process under harsh conditions with high CO<small><sub>2</sub></small> emissions. Chemical looping ammonia synthesis (CLAS) is an attractive alternative to the traditional HB process as it can break the Brønsted–Evans–Polanyi (BEP) scaling relationship and circumvent the competitive adsorption of N<small><sub>2</sub></small> and H<small><sub>2</sub></small> on metal catalysts by decoupling ammonia production into multiple reaction steps. The realization of highly efficient CLAS relies on developing redox catalysts with high activity at low temperatures. This review describes recent theoretical and experimental progresses in CLAS. The rational design of redox catalysts underlines the advantages of combined numerical and experimental approaches for the development of efficient redox catalysts towards green and efficient CLAS processes. Redox catalysts and external field-assisted technologies for lowering the reaction temperature and accelerating the reaction kinetics of CLAS are spotlighted, and relevant reaction mechanisms are discussed. The feasibility of the CLAS process based on the techno-economic analysis is reviewed. The challenges and opportunities of redox catalysts and reaction systems for CLAS are further discussed.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 7\",\"pages\":\" 2381-2405\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee00037d\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee00037d","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards green and efficient chemical looping ammonia synthesis: design principles and advanced redox catalysts
Ammonia plays an essential role in agriculture and next-generation energy systems but is currently synthesized industrially through the Haber–Bosh (HB) process under harsh conditions with high CO2 emissions. Chemical looping ammonia synthesis (CLAS) is an attractive alternative to the traditional HB process as it can break the Brønsted–Evans–Polanyi (BEP) scaling relationship and circumvent the competitive adsorption of N2 and H2 on metal catalysts by decoupling ammonia production into multiple reaction steps. The realization of highly efficient CLAS relies on developing redox catalysts with high activity at low temperatures. This review describes recent theoretical and experimental progresses in CLAS. The rational design of redox catalysts underlines the advantages of combined numerical and experimental approaches for the development of efficient redox catalysts towards green and efficient CLAS processes. Redox catalysts and external field-assisted technologies for lowering the reaction temperature and accelerating the reaction kinetics of CLAS are spotlighted, and relevant reaction mechanisms are discussed. The feasibility of the CLAS process based on the techno-economic analysis is reviewed. The challenges and opportunities of redox catalysts and reaction systems for CLAS are further discussed.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).