用于稀释冰箱的回路气隙热交换器传热特性的数值模拟和实验验证

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Dirui Wu , Shiguang Wu , Jun Tan , Han Tan , Renjun Xue , Yujia Zhai , Dong Ma , Shuting Lu , Haizheng Dang
{"title":"用于稀释冰箱的回路气隙热交换器传热特性的数值模拟和实验验证","authors":"Dirui Wu ,&nbsp;Shiguang Wu ,&nbsp;Jun Tan ,&nbsp;Han Tan ,&nbsp;Renjun Xue ,&nbsp;Yujia Zhai ,&nbsp;Dong Ma ,&nbsp;Shuting Lu ,&nbsp;Haizheng Dang","doi":"10.1016/j.cryogenics.2024.103818","DOIUrl":null,"url":null,"abstract":"<div><p>The gas gap heat switch (GGHS) used for controlling heat transfer between different stages can be an important component for the precooling process of some dilution refrigerators. In this paper, a novel circuit GGHS is a rotationally symmetric heat switch assembly with annular fin arrangements to strengthen the heat-transferring effect. A numerical model considering <sup>4</sup>He actual gas properties is proposed to investigate the heat transfer characteristics in the circuit GGHS, in which the effects of charge pressure, cold end temperature, thickness and length of walls on the mean thermal conductance (MTC) are studied. Simulation results show that the MTC increases with the growing cold end temperature, wall thickness, and length, respectively. Given the pressure of 10 kPa, cold end temperature of 4.2 K, wall thickness of 0.97 mm, and wall height of 66 mm, the theoretical MTC is 0.828 W/K. Experimental results indicate that the proposed simulation model is reasonable. Furthermore, the increment of the MTC decreases with the growing temperature. The GGHS used in experiments had a cold end temperature of 4 K, wall thickness of 0.65 mm, and wall height of 33 mm; the measured MTC was 0.219 W/K. Only when the temperature is above 10 K does the charge pressure have a pronounced effect on the MTC. This study provides helpful theoretical guidance for the design and optimization of the circuit GGHS.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and experimental validation of the heat transfer characteristics in a circuit gas gap heat switch for the dilution refrigerator\",\"authors\":\"Dirui Wu ,&nbsp;Shiguang Wu ,&nbsp;Jun Tan ,&nbsp;Han Tan ,&nbsp;Renjun Xue ,&nbsp;Yujia Zhai ,&nbsp;Dong Ma ,&nbsp;Shuting Lu ,&nbsp;Haizheng Dang\",\"doi\":\"10.1016/j.cryogenics.2024.103818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gas gap heat switch (GGHS) used for controlling heat transfer between different stages can be an important component for the precooling process of some dilution refrigerators. In this paper, a novel circuit GGHS is a rotationally symmetric heat switch assembly with annular fin arrangements to strengthen the heat-transferring effect. A numerical model considering <sup>4</sup>He actual gas properties is proposed to investigate the heat transfer characteristics in the circuit GGHS, in which the effects of charge pressure, cold end temperature, thickness and length of walls on the mean thermal conductance (MTC) are studied. Simulation results show that the MTC increases with the growing cold end temperature, wall thickness, and length, respectively. Given the pressure of 10 kPa, cold end temperature of 4.2 K, wall thickness of 0.97 mm, and wall height of 66 mm, the theoretical MTC is 0.828 W/K. Experimental results indicate that the proposed simulation model is reasonable. Furthermore, the increment of the MTC decreases with the growing temperature. The GGHS used in experiments had a cold end temperature of 4 K, wall thickness of 0.65 mm, and wall height of 33 mm; the measured MTC was 0.219 W/K. Only when the temperature is above 10 K does the charge pressure have a pronounced effect on the MTC. This study provides helpful theoretical guidance for the design and optimization of the circuit GGHS.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524000389\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524000389","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

用于控制不同阶段之间热量传递的气隙热交换器(GGHS)是某些稀释冰箱预冷过程中的一个重要组件。本文中的新型电路 GGHS 是一种旋转对称的热交换器组件,采用环形鳍片排列以加强传热效果。本文提出了一个考虑 4He 实际气体特性的数值模型来研究回路 GGHS 的传热特性,其中研究了充注压力、冷端温度、壁厚和壁长对平均热导率(MTC)的影响。模拟结果表明,MTC 分别随冷端温度、壁厚和长度的增加而增加。在压力为 10 kPa、冷端温度为 4.2 K、壁厚为 0.97 mm、壁高为 66 mm 的情况下,理论 MTC 为 0.828 W/K。实验结果表明,所提出的模拟模型是合理的。此外,MTC 的增量随温度的升高而减小。实验中使用的 GGHS 冷端温度为 4 K,壁厚为 0.65 mm,壁高为 33 mm;测得的 MTC 为 0.219 W/K。只有当温度高于 10 K 时,电荷压力才会对 MTC 产生明显影响。这项研究为电路 GGHS 的设计和优化提供了有益的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation and experimental validation of the heat transfer characteristics in a circuit gas gap heat switch for the dilution refrigerator

The gas gap heat switch (GGHS) used for controlling heat transfer between different stages can be an important component for the precooling process of some dilution refrigerators. In this paper, a novel circuit GGHS is a rotationally symmetric heat switch assembly with annular fin arrangements to strengthen the heat-transferring effect. A numerical model considering 4He actual gas properties is proposed to investigate the heat transfer characteristics in the circuit GGHS, in which the effects of charge pressure, cold end temperature, thickness and length of walls on the mean thermal conductance (MTC) are studied. Simulation results show that the MTC increases with the growing cold end temperature, wall thickness, and length, respectively. Given the pressure of 10 kPa, cold end temperature of 4.2 K, wall thickness of 0.97 mm, and wall height of 66 mm, the theoretical MTC is 0.828 W/K. Experimental results indicate that the proposed simulation model is reasonable. Furthermore, the increment of the MTC decreases with the growing temperature. The GGHS used in experiments had a cold end temperature of 4 K, wall thickness of 0.65 mm, and wall height of 33 mm; the measured MTC was 0.219 W/K. Only when the temperature is above 10 K does the charge pressure have a pronounced effect on the MTC. This study provides helpful theoretical guidance for the design and optimization of the circuit GGHS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信