q 球上分散和随机数据的 Marcinkiewicz-Zygmund 不等式

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Frank Filbir , Ralf Hielscher , Thomas Jahn , Tino Ullrich
{"title":"q 球上分散和随机数据的 Marcinkiewicz-Zygmund 不等式","authors":"Frank Filbir ,&nbsp;Ralf Hielscher ,&nbsp;Thomas Jahn ,&nbsp;Tino Ullrich","doi":"10.1016/j.acha.2024.101651","DOIUrl":null,"url":null,"abstract":"<div><p>The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the <em>q</em>-dimensional sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, and investigate how well continuous <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norms of polynomials <em>f</em> of maximum degree <em>n</em> on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> can be discretized by positively weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, the dimension <em>q</em>, and the degree <em>n</em> of the polynomials.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101651"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000289/pdfft?md5=c98b0bf5b8b162d91ccc058130ea9e34&pid=1-s2.0-S1063520324000289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere\",\"authors\":\"Frank Filbir ,&nbsp;Ralf Hielscher ,&nbsp;Thomas Jahn ,&nbsp;Tino Ullrich\",\"doi\":\"10.1016/j.acha.2024.101651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the <em>q</em>-dimensional sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, and investigate how well continuous <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norms of polynomials <em>f</em> of maximum degree <em>n</em> on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> can be discretized by positively weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, the dimension <em>q</em>, and the degree <em>n</em> of the polynomials.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"71 \",\"pages\":\"Article 101651\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000289/pdfft?md5=c98b0bf5b8b162d91ccc058130ea9e34&pid=1-s2.0-S1063520324000289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000289\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

从有限多个样本中恢复多元函数并估计其积分是现代近似理论的核心任务之一。Marcinkiewicz-Zygmund 不等式为恢复和正交两方面提供了答案。在本文中,我们将自己置于 q 维球面 Sq 上,研究球面 Sq 上最大度数为 n 的多项式 f 的连续 Lp-norms 如何通过有限多个样本的正加权 Lp-sum 离散化,并讨论连续和离散量之间的失真、球面 Sq 上(确定或随机选择的)样本点 ξ1,...,ξN 的数量和分布、维数 q 和多项式的度数 n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere

The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the q-dimensional sphere Sq, and investigate how well continuous Lp-norms of polynomials f of maximum degree n on the sphere Sq can be discretized by positively weighted Lp-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points ξ1,,ξN on Sq, the dimension q, and the degree n of the polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信