Frank Filbir , Ralf Hielscher , Thomas Jahn , Tino Ullrich
{"title":"q 球上分散和随机数据的 Marcinkiewicz-Zygmund 不等式","authors":"Frank Filbir , Ralf Hielscher , Thomas Jahn , Tino Ullrich","doi":"10.1016/j.acha.2024.101651","DOIUrl":null,"url":null,"abstract":"<div><p>The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the <em>q</em>-dimensional sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, and investigate how well continuous <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norms of polynomials <em>f</em> of maximum degree <em>n</em> on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> can be discretized by positively weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, the dimension <em>q</em>, and the degree <em>n</em> of the polynomials.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101651"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000289/pdfft?md5=c98b0bf5b8b162d91ccc058130ea9e34&pid=1-s2.0-S1063520324000289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere\",\"authors\":\"Frank Filbir , Ralf Hielscher , Thomas Jahn , Tino Ullrich\",\"doi\":\"10.1016/j.acha.2024.101651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the <em>q</em>-dimensional sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, and investigate how well continuous <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norms of polynomials <em>f</em> of maximum degree <em>n</em> on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> can be discretized by positively weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, the dimension <em>q</em>, and the degree <em>n</em> of the polynomials.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"71 \",\"pages\":\"Article 101651\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000289/pdfft?md5=c98b0bf5b8b162d91ccc058130ea9e34&pid=1-s2.0-S1063520324000289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000289\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere
The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the q-dimensional sphere , and investigate how well continuous -norms of polynomials f of maximum degree n on the sphere can be discretized by positively weighted -sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points on , the dimension q, and the degree n of the polynomials.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.