具有滑移边界条件的不可压缩纳维-斯托克斯-科特韦格方程的毛细管-粘度消失极限

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pingping Wang , Zhipeng Zhang
{"title":"具有滑移边界条件的不可压缩纳维-斯托克斯-科特韦格方程的毛细管-粘度消失极限","authors":"Pingping Wang ,&nbsp;Zhipeng Zhang","doi":"10.1016/j.na.2024.113526","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg (NSK) equations in a three-dimensional horizontally periodic strip domain, in which the velocity of the fluid is supplemented with slip boundary condition and the gradient of density with Dirichlet boundary condition on the boundary. We prove that there exists an positive constant <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> independent on the capillarity and viscosity coefficients, such that the incompressible NSK equations have a unique strong solution on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></mrow></math></span> and the solution is uniformly bounded in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Based on the uniform estimates, we further give the convergence rate in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> from the solutions of the incompressible NSK equations to the solution of the inhomogeneous incompressible Euler equations as the capillarity and viscosity coefficients go to zero simultaneously.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg equations with slip boundary condition\",\"authors\":\"Pingping Wang ,&nbsp;Zhipeng Zhang\",\"doi\":\"10.1016/j.na.2024.113526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg (NSK) equations in a three-dimensional horizontally periodic strip domain, in which the velocity of the fluid is supplemented with slip boundary condition and the gradient of density with Dirichlet boundary condition on the boundary. We prove that there exists an positive constant <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> independent on the capillarity and viscosity coefficients, such that the incompressible NSK equations have a unique strong solution on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></mrow></math></span> and the solution is uniformly bounded in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Based on the uniform estimates, we further give the convergence rate in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> from the solutions of the incompressible NSK equations to the solution of the inhomogeneous incompressible Euler equations as the capillarity and viscosity coefficients go to zero simultaneously.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000452\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000452","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维水平周期带状域中不可压缩纳维-斯托克斯-科特韦格(NSK)方程的毛细管-粘度消失极限,其中流体的速度辅以滑移边界条件,密度梯度辅以边界上的迪里夏特边界条件。我们证明存在一个与毛细管系数和粘滞系数无关的正常数 T0,使得不可压缩的 NSK 方程在 [0,T0] 上有唯一的强解,并且该解在 H3 中均匀有界。在均匀估计的基础上,我们进一步给出了当毛细管系数和粘滞系数同时归零时,不可压缩 NSK 方程的解在 H1 中向非均质不可压缩欧拉方程的解的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg equations with slip boundary condition

In this paper, we investigate the vanishing capillarity–viscosity limit of the incompressible Navier–Stokes–Korteweg (NSK) equations in a three-dimensional horizontally periodic strip domain, in which the velocity of the fluid is supplemented with slip boundary condition and the gradient of density with Dirichlet boundary condition on the boundary. We prove that there exists an positive constant T0 independent on the capillarity and viscosity coefficients, such that the incompressible NSK equations have a unique strong solution on [0,T0] and the solution is uniformly bounded in H3. Based on the uniform estimates, we further give the convergence rate in H1 from the solutions of the incompressible NSK equations to the solution of the inhomogeneous incompressible Euler equations as the capillarity and viscosity coefficients go to zero simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信