严重哮喘的大数据研究。

IF 2.5 Q2 RESPIRATORY SYSTEM
Tuberculosis and Respiratory Diseases Pub Date : 2024-07-01 Epub Date: 2024-03-05 DOI:10.4046/trd.2023.0186
Sang Hyuk Kim, Youlim Kim
{"title":"严重哮喘的大数据研究。","authors":"Sang Hyuk Kim, Youlim Kim","doi":"10.4046/trd.2023.0186","DOIUrl":null,"url":null,"abstract":"<p><p>The continuously increasing prevalence of severe asthma has imposed an increasing burden worldwide. Despite the emergence of novel therapeutic agents, management of severe asthma remains challenging. Insights garnered from big data may be helpful in the effort to determine the complex nature of severe asthma. In the field of asthma research, a vast amount of big data from various sources, including electronic health records, national claims data, and international cohorts, is now available. However, understanding of the strengths and limitations is required for proper utilization of specific datasets. Use of big data, along with advancements in artificial intelligence techniques, could potentially facilitate the practice of precision medicine in management of severe asthma.</p>","PeriodicalId":23368,"journal":{"name":"Tuberculosis and Respiratory Diseases","volume":" ","pages":"213-220"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Big Data Research on Severe Asthma.\",\"authors\":\"Sang Hyuk Kim, Youlim Kim\",\"doi\":\"10.4046/trd.2023.0186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The continuously increasing prevalence of severe asthma has imposed an increasing burden worldwide. Despite the emergence of novel therapeutic agents, management of severe asthma remains challenging. Insights garnered from big data may be helpful in the effort to determine the complex nature of severe asthma. In the field of asthma research, a vast amount of big data from various sources, including electronic health records, national claims data, and international cohorts, is now available. However, understanding of the strengths and limitations is required for proper utilization of specific datasets. Use of big data, along with advancements in artificial intelligence techniques, could potentially facilitate the practice of precision medicine in management of severe asthma.</p>\",\"PeriodicalId\":23368,\"journal\":{\"name\":\"Tuberculosis and Respiratory Diseases\",\"volume\":\" \",\"pages\":\"213-220\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tuberculosis and Respiratory Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4046/trd.2023.0186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis and Respiratory Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4046/trd.2023.0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

重症哮喘发病率的持续上升给全世界带来了日益沉重的负担。尽管出现了新型治疗药物,但重症哮喘的治疗仍然充满挑战。从大数据中获得的洞察力可能有助于确定重症哮喘的复杂性。在哮喘研究领域,目前已有大量来自不同来源的大数据,包括电子健康记录、国家索赔数据和国际队列。然而,要正确利用特定数据集,就必须了解其优势和局限性。大数据的使用以及人工智能技术的进步有可能促进在重症哮喘管理中实施精准医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big Data Research on Severe Asthma.

The continuously increasing prevalence of severe asthma has imposed an increasing burden worldwide. Despite the emergence of novel therapeutic agents, management of severe asthma remains challenging. Insights garnered from big data may be helpful in the effort to determine the complex nature of severe asthma. In the field of asthma research, a vast amount of big data from various sources, including electronic health records, national claims data, and international cohorts, is now available. However, understanding of the strengths and limitations is required for proper utilization of specific datasets. Use of big data, along with advancements in artificial intelligence techniques, could potentially facilitate the practice of precision medicine in management of severe asthma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
42
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信