{"title":"医疗成本和死亡率联合建模中的权重校准。","authors":"Seong Hoon Yoon, Alain Vandal, Claudia Rivera-Rodriguez","doi":"10.1177/09622802241236935","DOIUrl":null,"url":null,"abstract":"<p><p>Joint modelling of longitudinal and time-to-event data is a method that recognizes the dependency between the two data types, and combines the two outcomes into a single model, which leads to more precise estimates. These models are applicable when individuals are followed over a period of time, generally to monitor the progression of a disease or a medical condition, and also when longitudinal covariates are available. Medical cost datasets are often also available in longitudinal scenarios, but these datasets usually arise from a complex sampling design rather than simple random sampling and such complex sampling design needs to be accounted for in the statistical analysis. Ignoring the sampling mechanism can lead to misleading conclusions. This article proposes a novel approach to the joint modelling of complex data by combining survey calibration with standard joint modelling. This is achieved by incorporating a new set of equations to calibrate the sampling weights for the survival model in a joint model setting. The proposed method is applied to data on anti-dementia medication costs and mortality in people with diagnosed dementia in New Zealand.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"728-742"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145918/pdf/","citationCount":"0","resultStr":"{\"title\":\"Weight calibration in the joint modelling of medical cost and mortality.\",\"authors\":\"Seong Hoon Yoon, Alain Vandal, Claudia Rivera-Rodriguez\",\"doi\":\"10.1177/09622802241236935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Joint modelling of longitudinal and time-to-event data is a method that recognizes the dependency between the two data types, and combines the two outcomes into a single model, which leads to more precise estimates. These models are applicable when individuals are followed over a period of time, generally to monitor the progression of a disease or a medical condition, and also when longitudinal covariates are available. Medical cost datasets are often also available in longitudinal scenarios, but these datasets usually arise from a complex sampling design rather than simple random sampling and such complex sampling design needs to be accounted for in the statistical analysis. Ignoring the sampling mechanism can lead to misleading conclusions. This article proposes a novel approach to the joint modelling of complex data by combining survey calibration with standard joint modelling. This is achieved by incorporating a new set of equations to calibrate the sampling weights for the survival model in a joint model setting. The proposed method is applied to data on anti-dementia medication costs and mortality in people with diagnosed dementia in New Zealand.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"728-742\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241236935\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241236935","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Weight calibration in the joint modelling of medical cost and mortality.
Joint modelling of longitudinal and time-to-event data is a method that recognizes the dependency between the two data types, and combines the two outcomes into a single model, which leads to more precise estimates. These models are applicable when individuals are followed over a period of time, generally to monitor the progression of a disease or a medical condition, and also when longitudinal covariates are available. Medical cost datasets are often also available in longitudinal scenarios, but these datasets usually arise from a complex sampling design rather than simple random sampling and such complex sampling design needs to be accounted for in the statistical analysis. Ignoring the sampling mechanism can lead to misleading conclusions. This article proposes a novel approach to the joint modelling of complex data by combining survey calibration with standard joint modelling. This is achieved by incorporating a new set of equations to calibrate the sampling weights for the survival model in a joint model setting. The proposed method is applied to data on anti-dementia medication costs and mortality in people with diagnosed dementia in New Zealand.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)