Leonor Morgado, Estibaliz Gómez-de-Mariscal, Hannah S. Heil, Ricardo Henriques
{"title":"由机器学习驱动的数据驱动显微镜技术的兴起。","authors":"Leonor Morgado, Estibaliz Gómez-de-Mariscal, Hannah S. Heil, Ricardo Henriques","doi":"10.1111/jmi.13282","DOIUrl":null,"url":null,"abstract":"<p>Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13282","citationCount":"0","resultStr":"{\"title\":\"The rise of data-driven microscopy powered by machine learning\",\"authors\":\"Leonor Morgado, Estibaliz Gómez-de-Mariscal, Hannah S. Heil, Ricardo Henriques\",\"doi\":\"10.1111/jmi.13282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13282\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13282\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The rise of data-driven microscopy powered by machine learning
Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.