Kedar Devkota, Charles F Dos Santos, Patrick D Souza-Santos, Jenifer D Ramos, Alex Otesbelgue, Binayak Prakash Mishra, Eduardo A B Almeida, Betina Blochtein
{"title":"不同蜂系的花粉食物多样性随生活方式而异,而非蜂群大小。","authors":"Kedar Devkota, Charles F Dos Santos, Patrick D Souza-Santos, Jenifer D Ramos, Alex Otesbelgue, Binayak Prakash Mishra, Eduardo A B Almeida, Betina Blochtein","doi":"10.1093/jisesa/ieae023","DOIUrl":null,"url":null,"abstract":"<p><p>The shift to a pollen diet and the evolution of more highly organized societies, i.e., eusocial, were key milestones in bee diversification over their evolutionary history, culminating in a high dependence on feeding broods with a large variety of floral resources. Here, we hypothesized that obligatory eusocial bees have a wider diet diversity than their relatives with solitary lifestyles, and this would be related to colony size. To test both hypotheses, we surveyed diet breadth data (palynological analysis) based on the Shannon-Wiener index (H') for 85 bee taxa. We also obtained colony size for 47 eusocial bee species. These data were examined using phylogenetic comparative methods. The results support the generalist strategy as a derived trait for the bee taxa evaluated here. The dietary diversity of eusocial bees (H': 2.1, on average) was 67.5% higher than that of noneusocial bees (H': 1.21, on average). There was, however, no relationship between diet breadth and colony size, indicating that smaller colonies can harvest a pollen variety as diverse as larger colonies. Taken together, these results provide new insights into the impact of lifestyle on the diversity of collected pollen. Furthermore, this work sheds light on an advantage of living in more highly structured societies irrespective of the size of the colony.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914374/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pollen diet diversity across bee lineages varies with lifestyle rather than colony size.\",\"authors\":\"Kedar Devkota, Charles F Dos Santos, Patrick D Souza-Santos, Jenifer D Ramos, Alex Otesbelgue, Binayak Prakash Mishra, Eduardo A B Almeida, Betina Blochtein\",\"doi\":\"10.1093/jisesa/ieae023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The shift to a pollen diet and the evolution of more highly organized societies, i.e., eusocial, were key milestones in bee diversification over their evolutionary history, culminating in a high dependence on feeding broods with a large variety of floral resources. Here, we hypothesized that obligatory eusocial bees have a wider diet diversity than their relatives with solitary lifestyles, and this would be related to colony size. To test both hypotheses, we surveyed diet breadth data (palynological analysis) based on the Shannon-Wiener index (H') for 85 bee taxa. We also obtained colony size for 47 eusocial bee species. These data were examined using phylogenetic comparative methods. The results support the generalist strategy as a derived trait for the bee taxa evaluated here. The dietary diversity of eusocial bees (H': 2.1, on average) was 67.5% higher than that of noneusocial bees (H': 1.21, on average). There was, however, no relationship between diet breadth and colony size, indicating that smaller colonies can harvest a pollen variety as diverse as larger colonies. Taken together, these results provide new insights into the impact of lifestyle on the diversity of collected pollen. Furthermore, this work sheds light on an advantage of living in more highly structured societies irrespective of the size of the colony.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieae023\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae023","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Pollen diet diversity across bee lineages varies with lifestyle rather than colony size.
The shift to a pollen diet and the evolution of more highly organized societies, i.e., eusocial, were key milestones in bee diversification over their evolutionary history, culminating in a high dependence on feeding broods with a large variety of floral resources. Here, we hypothesized that obligatory eusocial bees have a wider diet diversity than their relatives with solitary lifestyles, and this would be related to colony size. To test both hypotheses, we surveyed diet breadth data (palynological analysis) based on the Shannon-Wiener index (H') for 85 bee taxa. We also obtained colony size for 47 eusocial bee species. These data were examined using phylogenetic comparative methods. The results support the generalist strategy as a derived trait for the bee taxa evaluated here. The dietary diversity of eusocial bees (H': 2.1, on average) was 67.5% higher than that of noneusocial bees (H': 1.21, on average). There was, however, no relationship between diet breadth and colony size, indicating that smaller colonies can harvest a pollen variety as diverse as larger colonies. Taken together, these results provide new insights into the impact of lifestyle on the diversity of collected pollen. Furthermore, this work sheds light on an advantage of living in more highly structured societies irrespective of the size of the colony.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.