{"title":"Nemourinae 种类(褶翅目:Nemouridae)的线粒体基因组及其系统发育意义。","authors":"Ying Wang, Caiyue Guo, Xiaoxiao Yue, Xing Fan, Yuying Fan, Jinjun Cao","doi":"10.1093/jisesa/ieae028","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the classification system of 2 subfamilies within Nemouridae has been widely accepted. However, monophyly of 2 subfamilies has not been well supported by molecular evidence. To date, only mitogenomes from genus Nemoura of the subfamily Nemourinae were used in previous phylogenetic studies and produced conflicting results with morphological studies. Herein, we analyzed mitogenomes of 3 Nemourinae species to reveal their mitogenomic characteristics and to examine genus-level classification among Nemouridae. In this study, the genome organization of 3 mitogenomes is highly conserved in gene order, nucleotide composition, codon usage, and amino acid composition. In 3 Nemourinae species, there is a high variation in nucleotide diversity among the 13 protein-coding genes (PCGs). The Ka/Ks values for all PCGs were far lower than 1, indicating that these genes were evolving under purifying selection. The phylogenetic analyses highly support Nemurella as the sister group to Ostrocerca. Meanwhile, Nemoura is recovered as the sister group of Malenka; they are grouped with other Amphinemurinae and emerged from a paraphyletic Nemourinae. More molecular data from different taxonomic groups are needed to understand stoneflies phylogeny and evolution.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial genomes of Nemourinae species (Plecoptera: Nemouridae) and the phylogenetic implications.\",\"authors\":\"Ying Wang, Caiyue Guo, Xiaoxiao Yue, Xing Fan, Yuying Fan, Jinjun Cao\",\"doi\":\"10.1093/jisesa/ieae028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, the classification system of 2 subfamilies within Nemouridae has been widely accepted. However, monophyly of 2 subfamilies has not been well supported by molecular evidence. To date, only mitogenomes from genus Nemoura of the subfamily Nemourinae were used in previous phylogenetic studies and produced conflicting results with morphological studies. Herein, we analyzed mitogenomes of 3 Nemourinae species to reveal their mitogenomic characteristics and to examine genus-level classification among Nemouridae. In this study, the genome organization of 3 mitogenomes is highly conserved in gene order, nucleotide composition, codon usage, and amino acid composition. In 3 Nemourinae species, there is a high variation in nucleotide diversity among the 13 protein-coding genes (PCGs). The Ka/Ks values for all PCGs were far lower than 1, indicating that these genes were evolving under purifying selection. The phylogenetic analyses highly support Nemurella as the sister group to Ostrocerca. Meanwhile, Nemoura is recovered as the sister group of Malenka; they are grouped with other Amphinemurinae and emerged from a paraphyletic Nemourinae. More molecular data from different taxonomic groups are needed to understand stoneflies phylogeny and evolution.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieae028\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae028","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Mitochondrial genomes of Nemourinae species (Plecoptera: Nemouridae) and the phylogenetic implications.
Currently, the classification system of 2 subfamilies within Nemouridae has been widely accepted. However, monophyly of 2 subfamilies has not been well supported by molecular evidence. To date, only mitogenomes from genus Nemoura of the subfamily Nemourinae were used in previous phylogenetic studies and produced conflicting results with morphological studies. Herein, we analyzed mitogenomes of 3 Nemourinae species to reveal their mitogenomic characteristics and to examine genus-level classification among Nemouridae. In this study, the genome organization of 3 mitogenomes is highly conserved in gene order, nucleotide composition, codon usage, and amino acid composition. In 3 Nemourinae species, there is a high variation in nucleotide diversity among the 13 protein-coding genes (PCGs). The Ka/Ks values for all PCGs were far lower than 1, indicating that these genes were evolving under purifying selection. The phylogenetic analyses highly support Nemurella as the sister group to Ostrocerca. Meanwhile, Nemoura is recovered as the sister group of Malenka; they are grouped with other Amphinemurinae and emerged from a paraphyletic Nemourinae. More molecular data from different taxonomic groups are needed to understand stoneflies phylogeny and evolution.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.