根部光合作用可防止附生兰蝴蝶兰缺氧。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luca Brunello, Ester Polverini, Giulia Lauria, Marco Landi, Lucia Guidi, Elena Loreti, Pierdomenico Perata
{"title":"根部光合作用可防止附生兰蝴蝶兰缺氧。","authors":"Luca Brunello, Ester Polverini, Giulia Lauria, Marco Landi, Lucia Guidi, Elena Loreti, Pierdomenico Perata","doi":"10.1071/FP23227","DOIUrl":null,"url":null,"abstract":"<p><p>Orchids (Phalaenopsis spp.) growing in tropical and subtropical regions are epiphytes. As such, they grow on trees with the root system utilised to anchor themselves to tree branches. These roots are highly specialised, display a large diameter and are often green, suggesting the ability to carry out photosynthesis. However, the role of photosynthesis in orchid roots is controversial. Orchids that are leafless can photosynthesise in their roots, thus indicating that some orchid roots carry out photosynthesis in a similar manner to leaves. However, the primary site of photosynthesis in orchids are in their leaves, and the roots of epiphytic orchids may mostly conduct internal refixation of respiratory CO2 . Besides contributing to the overall carbon metabolism of orchid plants, oxygen produced through root photosynthesis may also be important by alleviating potential root hypoxia. The bulky tissue of most epiphytic orchid roots suggests that oxygen diffusion in these roots can be limited. Here, we demonstrate that the bulky roots of a widely commercially cultivated orchid belonging to the genus Phalaenopsis are hypoxic in the dark. These roots are photosynthetically active and produce oxygen when exposed to light, thus mitigating root hypoxia.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root photosynthesis prevents hypoxia in the epiphytic orchid <i>Phalaenopsis</i>.\",\"authors\":\"Luca Brunello, Ester Polverini, Giulia Lauria, Marco Landi, Lucia Guidi, Elena Loreti, Pierdomenico Perata\",\"doi\":\"10.1071/FP23227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orchids (Phalaenopsis spp.) growing in tropical and subtropical regions are epiphytes. As such, they grow on trees with the root system utilised to anchor themselves to tree branches. These roots are highly specialised, display a large diameter and are often green, suggesting the ability to carry out photosynthesis. However, the role of photosynthesis in orchid roots is controversial. Orchids that are leafless can photosynthesise in their roots, thus indicating that some orchid roots carry out photosynthesis in a similar manner to leaves. However, the primary site of photosynthesis in orchids are in their leaves, and the roots of epiphytic orchids may mostly conduct internal refixation of respiratory CO2 . Besides contributing to the overall carbon metabolism of orchid plants, oxygen produced through root photosynthesis may also be important by alleviating potential root hypoxia. The bulky tissue of most epiphytic orchid roots suggests that oxygen diffusion in these roots can be limited. Here, we demonstrate that the bulky roots of a widely commercially cultivated orchid belonging to the genus Phalaenopsis are hypoxic in the dark. These roots are photosynthetically active and produce oxygen when exposed to light, thus mitigating root hypoxia.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP23227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

生长在热带和亚热带地区的兰花(蝴蝶兰属)是附生植物。因此,它们生长在树上,利用根系将自己固定在树枝上。这些根系高度特化,直径较大,通常呈绿色,表明它们能够进行光合作用。然而,光合作用在兰花根部的作用还存在争议。无叶的兰花可以在根部进行光合作用,这表明有些兰花的根部与叶片进行类似的光合作用。然而,兰花进行光合作用的主要场所是叶片,附生兰花的根可能主要进行呼吸二氧化碳的内部再固定。根部光合作用产生的氧气除了有助于兰科植物的整体碳代谢外,还能缓解根部潜在的缺氧状况,因此也很重要。大多数附生兰根的膨大组织表明,这些根中的氧气扩散可能会受到限制。在这里,我们证明了一种广泛商业化栽培的蝴蝶兰根系在黑暗中缺氧。这些根系光合作用活跃,在光照下会产生氧气,从而缓解根系缺氧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root photosynthesis prevents hypoxia in the epiphytic orchid Phalaenopsis.

Orchids (Phalaenopsis spp.) growing in tropical and subtropical regions are epiphytes. As such, they grow on trees with the root system utilised to anchor themselves to tree branches. These roots are highly specialised, display a large diameter and are often green, suggesting the ability to carry out photosynthesis. However, the role of photosynthesis in orchid roots is controversial. Orchids that are leafless can photosynthesise in their roots, thus indicating that some orchid roots carry out photosynthesis in a similar manner to leaves. However, the primary site of photosynthesis in orchids are in their leaves, and the roots of epiphytic orchids may mostly conduct internal refixation of respiratory CO2 . Besides contributing to the overall carbon metabolism of orchid plants, oxygen produced through root photosynthesis may also be important by alleviating potential root hypoxia. The bulky tissue of most epiphytic orchid roots suggests that oxygen diffusion in these roots can be limited. Here, we demonstrate that the bulky roots of a widely commercially cultivated orchid belonging to the genus Phalaenopsis are hypoxic in the dark. These roots are photosynthetically active and produce oxygen when exposed to light, thus mitigating root hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信