前寒武纪大陆地壳微生物活动和宜居性的水文地质控制。

IF 2.7 2区 地球科学 Q2 BIOLOGY
Geobiology Pub Date : 2024-03-06 DOI:10.1111/gbi.12592
Min Song, Oliver Warr, Jon Telling, Barbara Sherwood Lollar
{"title":"前寒武纪大陆地壳微生物活动和宜居性的水文地质控制。","authors":"Min Song,&nbsp;Oliver Warr,&nbsp;Jon Telling,&nbsp;Barbara Sherwood Lollar","doi":"10.1111/gbi.12592","DOIUrl":null,"url":null,"abstract":"<p>Earth's deep continental subsurface is a prime setting to study the limits of life's relationship with environmental conditions and habitability. In Precambrian crystalline rocks worldwide, deep ancient groundwaters in fracture networks are typically oligotrophic, highly saline, and locally inhabited by low-biomass communities in which chemolithotrophic microorganisms may dominate. Periodic opening of new fractures can lead to penetration of surface water and/or migration of fracture fluids, both of which may trigger changes in subsurface microbial composition and activity. These hydrogeological processes and their impacts on subsurface communities may play a significant role in global cycles of key elements in the crust. However, to date, considerable uncertainty remains on how subsurface microbial communities may respond to these changes in hydrogeochemical conditions. To address this uncertainty, the biogeochemistry of Thompson mine (Manitoba, Canada) was investigated. Compositional and isotopic analyses of fracture waters collected here at ~1 km below land surface revealed different extents of mixing between subsurface brine and (paleo)meteoric waters. To investigate the effects this mixing may have had on microbial communities, the Most Probable Number technique was applied to test community response for a total of 13 different metabolisms. The results showed that all fracture waters were dominated by viable heterotrophic microorganisms which can utilize organic materials associated with aerobic/facultative anaerobic processes, sulfate reduction, or fermentation. Where mixing between subsurface brines and (paleo)meteoric waters occurs, the communities demonstrate higher cell densities and increased viable functional potentials, compared to the most saline sample. This study therefore highlights the connection between hydrogeologic heterogeneity and the heterogeneity of subsurface ecosystems in the crystalline rocks, and suggests that hydrogeology can have a considerable impact on the scope and scale of subsurface microbial communities on Earth and potentially beyond.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12592","citationCount":"0","resultStr":"{\"title\":\"Hydrogeological controls on microbial activity and habitability in the Precambrian continental crust\",\"authors\":\"Min Song,&nbsp;Oliver Warr,&nbsp;Jon Telling,&nbsp;Barbara Sherwood Lollar\",\"doi\":\"10.1111/gbi.12592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Earth's deep continental subsurface is a prime setting to study the limits of life's relationship with environmental conditions and habitability. In Precambrian crystalline rocks worldwide, deep ancient groundwaters in fracture networks are typically oligotrophic, highly saline, and locally inhabited by low-biomass communities in which chemolithotrophic microorganisms may dominate. Periodic opening of new fractures can lead to penetration of surface water and/or migration of fracture fluids, both of which may trigger changes in subsurface microbial composition and activity. These hydrogeological processes and their impacts on subsurface communities may play a significant role in global cycles of key elements in the crust. However, to date, considerable uncertainty remains on how subsurface microbial communities may respond to these changes in hydrogeochemical conditions. To address this uncertainty, the biogeochemistry of Thompson mine (Manitoba, Canada) was investigated. Compositional and isotopic analyses of fracture waters collected here at ~1 km below land surface revealed different extents of mixing between subsurface brine and (paleo)meteoric waters. To investigate the effects this mixing may have had on microbial communities, the Most Probable Number technique was applied to test community response for a total of 13 different metabolisms. The results showed that all fracture waters were dominated by viable heterotrophic microorganisms which can utilize organic materials associated with aerobic/facultative anaerobic processes, sulfate reduction, or fermentation. Where mixing between subsurface brines and (paleo)meteoric waters occurs, the communities demonstrate higher cell densities and increased viable functional potentials, compared to the most saline sample. This study therefore highlights the connection between hydrogeologic heterogeneity and the heterogeneity of subsurface ecosystems in the crystalline rocks, and suggests that hydrogeology can have a considerable impact on the scope and scale of subsurface microbial communities on Earth and potentially beyond.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"22 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12592\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12592\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12592","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

地球深层大陆地下是研究生命与环境条件和宜居性之间关系极限的主要环境。在世界各地的前寒武纪结晶岩中,断裂网络中的深层古地下水通常是低营养、高盐度的,局部栖息着低生物量群落,其中以化石营养微生物为主。新裂缝的定期打开会导致地表水的渗透和/或裂缝流体的迁移,这两种情况都可能引发地下微生物组成和活动的变化。这些水文地质过程及其对地下群落的影响可能在地壳关键元素的全球循环中发挥重要作用。然而,迄今为止,地下微生物群落如何应对这些水文地质条件的变化仍存在很大的不确定性。为了解决这一不确定性,我们对汤普森矿(加拿大马尼托巴省)的生物地球化学进行了研究。在此采集的地表以下约 1 千米处的断裂水的成分和同位素分析表明,地下卤水和(古)流星水之间存在不同程度的混合。为了研究这种混合可能对微生物群落产生的影响,采用了最可能数技术来测试群落对总共 13 种不同代谢物的反应。结果表明,所有断裂水域都以有活力的异养微生物为主,这些微生物可以利用与好氧/兼性厌氧过程、硫酸盐还原或发酵有关的有机物质。与盐度最高的样本相比,在地下盐水与(古)流星水混合的地方,群落显示出更高的细胞密度和更强的存活功能潜力。因此,这项研究强调了水文地质异质性与结晶岩地下生态系统异质性之间的联系,并表明水文地质对地球地下微生物群落的范围和规模有相当大的影响,甚至有可能影响到地球以外的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogeological controls on microbial activity and habitability in the Precambrian continental crust

Hydrogeological controls on microbial activity and habitability in the Precambrian continental crust

Earth's deep continental subsurface is a prime setting to study the limits of life's relationship with environmental conditions and habitability. In Precambrian crystalline rocks worldwide, deep ancient groundwaters in fracture networks are typically oligotrophic, highly saline, and locally inhabited by low-biomass communities in which chemolithotrophic microorganisms may dominate. Periodic opening of new fractures can lead to penetration of surface water and/or migration of fracture fluids, both of which may trigger changes in subsurface microbial composition and activity. These hydrogeological processes and their impacts on subsurface communities may play a significant role in global cycles of key elements in the crust. However, to date, considerable uncertainty remains on how subsurface microbial communities may respond to these changes in hydrogeochemical conditions. To address this uncertainty, the biogeochemistry of Thompson mine (Manitoba, Canada) was investigated. Compositional and isotopic analyses of fracture waters collected here at ~1 km below land surface revealed different extents of mixing between subsurface brine and (paleo)meteoric waters. To investigate the effects this mixing may have had on microbial communities, the Most Probable Number technique was applied to test community response for a total of 13 different metabolisms. The results showed that all fracture waters were dominated by viable heterotrophic microorganisms which can utilize organic materials associated with aerobic/facultative anaerobic processes, sulfate reduction, or fermentation. Where mixing between subsurface brines and (paleo)meteoric waters occurs, the communities demonstrate higher cell densities and increased viable functional potentials, compared to the most saline sample. This study therefore highlights the connection between hydrogeologic heterogeneity and the heterogeneity of subsurface ecosystems in the crystalline rocks, and suggests that hydrogeology can have a considerable impact on the scope and scale of subsurface microbial communities on Earth and potentially beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信