{"title":"根据土壤温度动态数据确定土壤热物理参数","authors":"R. Mikail, E. Hazar, E. Shein, F. Mikailsoy","doi":"10.1134/s1064229323700278","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Methods for determining the thermal diffusivity coefficient from point temperature records in soil of a given thickness have been developed. Data on the dynamics of soil temperature measured at the same depth eight times per day with an interval of 3 hours are used. The proposed methods are based on solving inverse problems of the heat transfer equation (with two harmonics on the soil surface). Experimental studies on the temperature of the layers (0, 5, 10, 15, 20, and 40 cm) of gley alluvial soil (Calcaric Gleyic Pantofluvic Fluvisol) in the Igdır region (eastern Turkey) were carried out using Elitech RC-4 sensors during the summer season. Using the obtained data, various methods were used to calculate the thermophysical properties of the soil, namely thermal conductivity, thermal diffusivity, attenuation depth, heat transfer, and heat flux. Based on statistical criteria, it has been proven that the proposed point model is the best one. It has been established that for the studied soil, the thermal diffusivity κ is 1.1035×10<sup>–6</sup> m<sup>2</sup>/s, thermal conductivity λ is 1.7612 W/(m <sup>о</sup>С), damping depth <i>d</i> is 17.42 cm, and thermal effusivity <i>e</i> is 27.9431 W h<sup>0.5</sup>/m<sup>2</sup> °C. In addition, in accordance with the model obtained, it was determined that the largest heat flux on the soil surface occurs at 12:00 pm (<i>q</i> = 106.85 W/m<sup>2</sup>), and the lowest heat flux, at 03:00 am (<i>q</i> = –64.62 W/m<sup>2</sup>).</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"63 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Thermophysical Parameters of the Soil according to Dynamic Data on Its Temperature\",\"authors\":\"R. Mikail, E. Hazar, E. Shein, F. Mikailsoy\",\"doi\":\"10.1134/s1064229323700278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Methods for determining the thermal diffusivity coefficient from point temperature records in soil of a given thickness have been developed. Data on the dynamics of soil temperature measured at the same depth eight times per day with an interval of 3 hours are used. The proposed methods are based on solving inverse problems of the heat transfer equation (with two harmonics on the soil surface). Experimental studies on the temperature of the layers (0, 5, 10, 15, 20, and 40 cm) of gley alluvial soil (Calcaric Gleyic Pantofluvic Fluvisol) in the Igdır region (eastern Turkey) were carried out using Elitech RC-4 sensors during the summer season. Using the obtained data, various methods were used to calculate the thermophysical properties of the soil, namely thermal conductivity, thermal diffusivity, attenuation depth, heat transfer, and heat flux. Based on statistical criteria, it has been proven that the proposed point model is the best one. It has been established that for the studied soil, the thermal diffusivity κ is 1.1035×10<sup>–6</sup> m<sup>2</sup>/s, thermal conductivity λ is 1.7612 W/(m <sup>о</sup>С), damping depth <i>d</i> is 17.42 cm, and thermal effusivity <i>e</i> is 27.9431 W h<sup>0.5</sup>/m<sup>2</sup> °C. In addition, in accordance with the model obtained, it was determined that the largest heat flux on the soil surface occurs at 12:00 pm (<i>q</i> = 106.85 W/m<sup>2</sup>), and the lowest heat flux, at 03:00 am (<i>q</i> = –64.62 W/m<sup>2</sup>).</p>\",\"PeriodicalId\":11892,\"journal\":{\"name\":\"Eurasian Soil Science\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1134/s1064229323700278\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1134/s1064229323700278","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Determination of Thermophysical Parameters of the Soil according to Dynamic Data on Its Temperature
Abstract
Methods for determining the thermal diffusivity coefficient from point temperature records in soil of a given thickness have been developed. Data on the dynamics of soil temperature measured at the same depth eight times per day with an interval of 3 hours are used. The proposed methods are based on solving inverse problems of the heat transfer equation (with two harmonics on the soil surface). Experimental studies on the temperature of the layers (0, 5, 10, 15, 20, and 40 cm) of gley alluvial soil (Calcaric Gleyic Pantofluvic Fluvisol) in the Igdır region (eastern Turkey) were carried out using Elitech RC-4 sensors during the summer season. Using the obtained data, various methods were used to calculate the thermophysical properties of the soil, namely thermal conductivity, thermal diffusivity, attenuation depth, heat transfer, and heat flux. Based on statistical criteria, it has been proven that the proposed point model is the best one. It has been established that for the studied soil, the thermal diffusivity κ is 1.1035×10–6 m2/s, thermal conductivity λ is 1.7612 W/(m оС), damping depth d is 17.42 cm, and thermal effusivity e is 27.9431 W h0.5/m2 °C. In addition, in accordance with the model obtained, it was determined that the largest heat flux on the soil surface occurs at 12:00 pm (q = 106.85 W/m2), and the lowest heat flux, at 03:00 am (q = –64.62 W/m2).
期刊介绍:
Eurasian Soil Science publishes original research papers on global and regional studies discussing both theoretical and experimental problems of genesis, geography, physics, chemistry, biology, fertility, management, conservation, and remediation of soils. Special sections are devoted to current news in the life of the International and Russian soil science societies and to the history of soil sciences.
Since 2000, the journal Agricultural Chemistry, the English version of the journal of the Russian Academy of Sciences Agrokhimiya, has been merged into the journal Eurasian Soil Science and is no longer published as a separate title.