论由$$x^7+ax^2+b$$型三项式定义的隔行数域的共指数除数和单原性

IF 0.6 3区 数学 Q3 MATHEMATICS
H. Ben Yakkou
{"title":"论由$$x^7+ax^2+b$$型三项式定义的隔行数域的共指数除数和单原性","authors":"H. Ben Yakkou","doi":"10.1007/s10474-024-01409-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study the index <span>\\(i(K)\\)</span> of any septic number field <span>\\(K\\)</span> generated\nby a root of an irreducible trinomial of type <span>\\(F(x)=x^7+ax^2+b \\in \\mathbb{Z}[x]\\)</span>. We show\nthat the unique prime which can divide <span>\\(i(K)\\)</span> is <span>\\(2\\)</span>. Moreover, we give necessary\nand sufficient conditions on <span>\\(a\\)</span> and <span>\\(b\\)</span> so that <span>\\(2\\)</span> is a common index divisor of <span>\\(K\\)</span>.\nFurther, we show that <span>\\(i(K)=2\\)</span> whenever <span>\\(2\\)</span> divides <span>\\(i(K)\\)</span>. In this way, we answer\ncompletely Problem <span>\\(6\\)</span> and Problem <span>\\(22\\)</span> of Narkiewicz [34] for these families of number fields. As an application of our results, if <span>\\(2\\)</span> divides <span>\\(i(K)\\)</span>, then the ring\n<span>\\(\\mathcal{O}_K\\)</span> of integers of <span>\\(K\\)</span> has no power integral basis. We illustrate our results by\ngiving some numerical examples.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 2","pages":"378 - 399"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On common index divisors and monogenity of septic number fields defined by trinomials of type \\\\(x^7+ax^2+b\\\\)\",\"authors\":\"H. Ben Yakkou\",\"doi\":\"10.1007/s10474-024-01409-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the index <span>\\\\(i(K)\\\\)</span> of any septic number field <span>\\\\(K\\\\)</span> generated\\nby a root of an irreducible trinomial of type <span>\\\\(F(x)=x^7+ax^2+b \\\\in \\\\mathbb{Z}[x]\\\\)</span>. We show\\nthat the unique prime which can divide <span>\\\\(i(K)\\\\)</span> is <span>\\\\(2\\\\)</span>. Moreover, we give necessary\\nand sufficient conditions on <span>\\\\(a\\\\)</span> and <span>\\\\(b\\\\)</span> so that <span>\\\\(2\\\\)</span> is a common index divisor of <span>\\\\(K\\\\)</span>.\\nFurther, we show that <span>\\\\(i(K)=2\\\\)</span> whenever <span>\\\\(2\\\\)</span> divides <span>\\\\(i(K)\\\\)</span>. In this way, we answer\\ncompletely Problem <span>\\\\(6\\\\)</span> and Problem <span>\\\\(22\\\\)</span> of Narkiewicz [34] for these families of number fields. As an application of our results, if <span>\\\\(2\\\\)</span> divides <span>\\\\(i(K)\\\\)</span>, then the ring\\n<span>\\\\(\\\\mathcal{O}_K\\\\)</span> of integers of <span>\\\\(K\\\\)</span> has no power integral basis. We illustrate our results by\\ngiving some numerical examples.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"172 2\",\"pages\":\"378 - 399\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01409-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01409-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由\(F(x)=x^7+ax^2+b \in \mathbb{Z}[x]\) 型不可还原三项式的一个根所产生的任何septic数域\(K)的索引\(i(K)\)。我们证明了能够分割 (i(K))的唯一素数是 (2)。此外,我们给出了关于(a)和(b)的必要条件和充分条件,以便(2)是(i(K))的共同指数除数。此外,我们还证明了只要(2)除以(i(K)),(i(K)=2)就是(i(K))。这样,我们就完全回答了Narkiewicz[34]关于这些数域家族的问题(6)和问题(22)。作为我们结果的一个应用,如果 \(2\) 除以 \(i(K)\),那么 \(K\) 的整数环(\mathcal{O}_K\ )就没有幂积分基础。我们通过给出一些数字例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On common index divisors and monogenity of septic number fields defined by trinomials of type \(x^7+ax^2+b\)

We study the index \(i(K)\) of any septic number field \(K\) generated by a root of an irreducible trinomial of type \(F(x)=x^7+ax^2+b \in \mathbb{Z}[x]\). We show that the unique prime which can divide \(i(K)\) is \(2\). Moreover, we give necessary and sufficient conditions on \(a\) and \(b\) so that \(2\) is a common index divisor of \(K\). Further, we show that \(i(K)=2\) whenever \(2\) divides \(i(K)\). In this way, we answer completely Problem \(6\) and Problem \(22\) of Narkiewicz [34] for these families of number fields. As an application of our results, if \(2\) divides \(i(K)\), then the ring \(\mathcal{O}_K\) of integers of \(K\) has no power integral basis. We illustrate our results by giving some numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信