用于求解可压缩流动的高分辨率映射型 WENO-Z 方案

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shujiang Tang, Mingjun Li
{"title":"用于求解可压缩流动的高分辨率映射型 WENO-Z 方案","authors":"Shujiang Tang,&nbsp;Mingjun Li","doi":"10.1002/fld.5275","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a new WENO-Z scheme (WENO-MZ) that incorporates a mapping function to enhance the weights of the less smooth sub-stencils. The mapping function uses an innovative approach to modify the weight ratio of the less smooth sub-stencil to the smooth stencil. In addition, we present the WENO-MD scheme, which is a further development of the WENO-MZ scheme that incorporates a modifier function. The WENO-MD scheme shows improvements over the WENO-MZ scheme by achieving an improved optimal order at critical points in higher orders and by increasing the proportion of less smooth sub-stencils. Theoretical and numerical experiments have shown that the newly developed methods have improved shock capture capabilities and resolution compared to WENO-JS, WENO-Z, WENO-M, WENO-D, and WENO-AIM, and also lead to significant computational time savings compared to WENO-M and WENO-AIM.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"1031-1056"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution mapping type WENO-Z schemes for solving compressible flow\",\"authors\":\"Shujiang Tang,&nbsp;Mingjun Li\",\"doi\":\"10.1002/fld.5275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper presents a new WENO-Z scheme (WENO-MZ) that incorporates a mapping function to enhance the weights of the less smooth sub-stencils. The mapping function uses an innovative approach to modify the weight ratio of the less smooth sub-stencil to the smooth stencil. In addition, we present the WENO-MD scheme, which is a further development of the WENO-MZ scheme that incorporates a modifier function. The WENO-MD scheme shows improvements over the WENO-MZ scheme by achieving an improved optimal order at critical points in higher orders and by increasing the proportion of less smooth sub-stencils. Theoretical and numerical experiments have shown that the newly developed methods have improved shock capture capabilities and resolution compared to WENO-JS, WENO-Z, WENO-M, WENO-D, and WENO-AIM, and also lead to significant computational time savings compared to WENO-M and WENO-AIM.</p>\\n </div>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 6\",\"pages\":\"1031-1056\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5275\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文提出了一种新的 WENO-Z 方案(WENO-MZ),该方案采用了一种映射函数来增强不平滑子模板的权重。该映射函数采用一种创新方法来修改较不平滑子钢网与平滑钢网的权重比。此外,我们还提出了 WENO-MD 方案,它是 WENO-MZ 方案的进一步发展,其中包含了一个修改函数。与 WENO-MZ 方案相比,WENO-MD 方案在高阶临界点的最佳阶数方面有所改进,并增加了较不平滑子钢网的比例。理论和数值实验表明,与 WENO-JS、WENO-Z、WENO-M、WENO-D 和 WENO-AIM 相比,新开发的方法具有更强的冲击捕捉能力和分辨率,与 WENO-M 和 WENO-AIM 相比,还显著节省了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-resolution mapping type WENO-Z schemes for solving compressible flow

High-resolution mapping type WENO-Z schemes for solving compressible flow

This paper presents a new WENO-Z scheme (WENO-MZ) that incorporates a mapping function to enhance the weights of the less smooth sub-stencils. The mapping function uses an innovative approach to modify the weight ratio of the less smooth sub-stencil to the smooth stencil. In addition, we present the WENO-MD scheme, which is a further development of the WENO-MZ scheme that incorporates a modifier function. The WENO-MD scheme shows improvements over the WENO-MZ scheme by achieving an improved optimal order at critical points in higher orders and by increasing the proportion of less smooth sub-stencils. Theoretical and numerical experiments have shown that the newly developed methods have improved shock capture capabilities and resolution compared to WENO-JS, WENO-Z, WENO-M, WENO-D, and WENO-AIM, and also lead to significant computational time savings compared to WENO-M and WENO-AIM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信