{"title":"浅层生物气盆地有机质富集机制:盖达姆盆地更新世页岩案例研究","authors":"Xiaoxue Liu, Zhenxue Jiang, Xianglu Tang, Zeyu Shao, Mingshuai Xu","doi":"10.1002/jqs.3612","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Organic matter is the material basis of shale gas. The Qaidam Basin is a key exploration and development area for shallow biogenic shale gas in China. In this study, we have focused on Quaternary Pleistocene shale in the Qaidam Basin, and the mechanism of organic matter enrichment was investigated in terms of water column stratification and paleoclimate. The results show that the K9–K7 section has greater biological productivity than the K5–K4 section. During the early–middle Pleistocene (K9–K7 deposition period), due to a warm and humid climate, the water column was strongly stratified and herbaceous plants developed, resulting in increased biological productivity. Stronger stratification also led to a reducing environment in the lower layer, which was conducive to the preservation of organic matter from the upper layer. During the late Pleistocene (K5–K4 deposition period), with a dry and hot climate, stratification became weaker and the vegetation evolved into woody plants, reducing biological productivity. Weaker stratification led to destruction of the reducing environment, which was not conducive to enrichment of the sedimentary organic matter. Moreover, the increased temperatures increased the activity of methanogenic bacteria, which consumed a lot of the organic matter.</p>\n </div>","PeriodicalId":16929,"journal":{"name":"Journal of Quaternary Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of organic matter enrichment in a basin with shallow biogenic gas: a case study of Pleistocene shale in the Qaidam Basin\",\"authors\":\"Xiaoxue Liu, Zhenxue Jiang, Xianglu Tang, Zeyu Shao, Mingshuai Xu\",\"doi\":\"10.1002/jqs.3612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Organic matter is the material basis of shale gas. The Qaidam Basin is a key exploration and development area for shallow biogenic shale gas in China. In this study, we have focused on Quaternary Pleistocene shale in the Qaidam Basin, and the mechanism of organic matter enrichment was investigated in terms of water column stratification and paleoclimate. The results show that the K9–K7 section has greater biological productivity than the K5–K4 section. During the early–middle Pleistocene (K9–K7 deposition period), due to a warm and humid climate, the water column was strongly stratified and herbaceous plants developed, resulting in increased biological productivity. Stronger stratification also led to a reducing environment in the lower layer, which was conducive to the preservation of organic matter from the upper layer. During the late Pleistocene (K5–K4 deposition period), with a dry and hot climate, stratification became weaker and the vegetation evolved into woody plants, reducing biological productivity. Weaker stratification led to destruction of the reducing environment, which was not conducive to enrichment of the sedimentary organic matter. Moreover, the increased temperatures increased the activity of methanogenic bacteria, which consumed a lot of the organic matter.</p>\\n </div>\",\"PeriodicalId\":16929,\"journal\":{\"name\":\"Journal of Quaternary Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quaternary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jqs.3612\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quaternary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jqs.3612","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Mechanism of organic matter enrichment in a basin with shallow biogenic gas: a case study of Pleistocene shale in the Qaidam Basin
Organic matter is the material basis of shale gas. The Qaidam Basin is a key exploration and development area for shallow biogenic shale gas in China. In this study, we have focused on Quaternary Pleistocene shale in the Qaidam Basin, and the mechanism of organic matter enrichment was investigated in terms of water column stratification and paleoclimate. The results show that the K9–K7 section has greater biological productivity than the K5–K4 section. During the early–middle Pleistocene (K9–K7 deposition period), due to a warm and humid climate, the water column was strongly stratified and herbaceous plants developed, resulting in increased biological productivity. Stronger stratification also led to a reducing environment in the lower layer, which was conducive to the preservation of organic matter from the upper layer. During the late Pleistocene (K5–K4 deposition period), with a dry and hot climate, stratification became weaker and the vegetation evolved into woody plants, reducing biological productivity. Weaker stratification led to destruction of the reducing environment, which was not conducive to enrichment of the sedimentary organic matter. Moreover, the increased temperatures increased the activity of methanogenic bacteria, which consumed a lot of the organic matter.
期刊介绍:
The Journal of Quaternary Science publishes original papers on any field of Quaternary research, and aims to promote a wider appreciation and deeper understanding of the earth''s history during the last 2.58 million years. Papers from a wide range of disciplines appear in JQS including, for example, Archaeology, Botany, Climatology, Geochemistry, Geochronology, Geology, Geomorphology, Geophysics, Glaciology, Limnology, Oceanography, Palaeoceanography, Palaeoclimatology, Palaeoecology, Palaeontology, Soil Science and Zoology. The journal particularly welcomes papers reporting the results of interdisciplinary or multidisciplinary research which are of wide international interest to Quaternary scientists. Short communications and correspondence relating to views and information contained in JQS may also be considered for publication.