Blake McCall, Karan Rana, Kate Sugden, Sarah Junaid
{"title":"体外固定针部位模型概念验证:研究经皮植入物伤口愈合的新方法","authors":"Blake McCall, Karan Rana, Kate Sugden, Sarah Junaid","doi":"10.1177/09544119241234154","DOIUrl":null,"url":null,"abstract":"External fixation is an essential surgical technique for treating trauma, limb lengthening and deformity correction, however infection is common, with infection rates ranging from 4.5 to 100% of cases. Throughout the literature researchers and clinicians have highlighted a relationship between excessive movement of the pin and skin and an increase in the patient’s risk of infection, however, currently no studies have addressed this role of pin-movement on pin-site wounds. This preliminary study describes a novel in vitro pin-site model, developed using a full-thickness human skin equivalent (HSE) model in conjunction with a bespoke mechanical system which simulates pin-movement. The effect of pin-movement on the wound healing response of the skin equivalents was assessed by measuring the expression of pro-inflammatory cytokines. Six human skin equivalent models were divided into three test groups: no pin as the control, static pin-site wound and dynamic pin-site wound ( n = 3). On day 3 concentrations of IL-1α and IL-8 showed a significant increase compared to the control when a static fixation pin was implanted into the skin equivalent ( p < 0.05) and ( p < 0.005) respectively. Levels of IL-1α and IL-8 increased further in the dynamic sample compared to the static sample ( p < 0.05) and ( p < 0.0005). This study demonstrates for the first time the application of HSE model to study external-fixation pin-movement in vitro. The results of this study demonstrated pin-movement has a negative effect on soft-tissue wound-healing, supporting the anecdotal evidence reported in the literature, however further analysis of wound heading would be required to verify this hypothesis.","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"57 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vitro external fixation pin-site model proof of concept: A novel approach to studying wound healing in transcutaneous implants\",\"authors\":\"Blake McCall, Karan Rana, Kate Sugden, Sarah Junaid\",\"doi\":\"10.1177/09544119241234154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"External fixation is an essential surgical technique for treating trauma, limb lengthening and deformity correction, however infection is common, with infection rates ranging from 4.5 to 100% of cases. Throughout the literature researchers and clinicians have highlighted a relationship between excessive movement of the pin and skin and an increase in the patient’s risk of infection, however, currently no studies have addressed this role of pin-movement on pin-site wounds. This preliminary study describes a novel in vitro pin-site model, developed using a full-thickness human skin equivalent (HSE) model in conjunction with a bespoke mechanical system which simulates pin-movement. The effect of pin-movement on the wound healing response of the skin equivalents was assessed by measuring the expression of pro-inflammatory cytokines. Six human skin equivalent models were divided into three test groups: no pin as the control, static pin-site wound and dynamic pin-site wound ( n = 3). On day 3 concentrations of IL-1α and IL-8 showed a significant increase compared to the control when a static fixation pin was implanted into the skin equivalent ( p < 0.05) and ( p < 0.005) respectively. Levels of IL-1α and IL-8 increased further in the dynamic sample compared to the static sample ( p < 0.05) and ( p < 0.0005). This study demonstrates for the first time the application of HSE model to study external-fixation pin-movement in vitro. The results of this study demonstrated pin-movement has a negative effect on soft-tissue wound-healing, supporting the anecdotal evidence reported in the literature, however further analysis of wound heading would be required to verify this hypothesis.\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119241234154\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241234154","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In-vitro external fixation pin-site model proof of concept: A novel approach to studying wound healing in transcutaneous implants
External fixation is an essential surgical technique for treating trauma, limb lengthening and deformity correction, however infection is common, with infection rates ranging from 4.5 to 100% of cases. Throughout the literature researchers and clinicians have highlighted a relationship between excessive movement of the pin and skin and an increase in the patient’s risk of infection, however, currently no studies have addressed this role of pin-movement on pin-site wounds. This preliminary study describes a novel in vitro pin-site model, developed using a full-thickness human skin equivalent (HSE) model in conjunction with a bespoke mechanical system which simulates pin-movement. The effect of pin-movement on the wound healing response of the skin equivalents was assessed by measuring the expression of pro-inflammatory cytokines. Six human skin equivalent models were divided into three test groups: no pin as the control, static pin-site wound and dynamic pin-site wound ( n = 3). On day 3 concentrations of IL-1α and IL-8 showed a significant increase compared to the control when a static fixation pin was implanted into the skin equivalent ( p < 0.05) and ( p < 0.005) respectively. Levels of IL-1α and IL-8 increased further in the dynamic sample compared to the static sample ( p < 0.05) and ( p < 0.0005). This study demonstrates for the first time the application of HSE model to study external-fixation pin-movement in vitro. The results of this study demonstrated pin-movement has a negative effect on soft-tissue wound-healing, supporting the anecdotal evidence reported in the literature, however further analysis of wound heading would be required to verify this hypothesis.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.