陆地-大气耦合对美国西部夏季气温变化的影响有多大?

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Lucas R. Vargas Zeppetello, Lily N. Zhang, David S. Battisti, Marysa M. Laguë
{"title":"陆地-大气耦合对美国西部夏季气温变化的影响有多大?","authors":"Lucas R. Vargas Zeppetello, Lily N. Zhang, David S. Battisti, Marysa M. Laguë","doi":"10.1175/jcli-d-23-0716.1","DOIUrl":null,"url":null,"abstract":"Abstract Interannual fluctuations in average summertime temperatures across the western United States are captured by a leading EOF that explains over 50% of the total observed variance. In this paper, we explain the origins of this pattern of interannual temperature variability by examining soil moisture-temperature coupling that acts across seasons in observations and climate models. We find that a characteristic pattern of coupled temperature-soil moisture climate variability accounts for 34% of the total observed variance in summertime temperature across the region. This pattern is reproduced in state-of-the-art global climate models, where experiments that eliminate soil moisture variability reduce summertime average temperature variance by a factor of three on average. We use an idealized model of the coupled atmospheric boundary layer and underlying land surface to demonstrate that feedbacks between soil moisture, boundary layer relative humidity, and precipitation can explain the observed relations between springtime soil moisture and summertime temperature. Our results suggest that antecedent soil moisture conditions and subsequent land-atmosphere interactions play an important role in interannual summertime temperature variability in the western U.S.; soil moisture variations cause distal temperature anomalies and impart predictability at timescales longer than one season. Our results indicate that 40% of the observed warming trend across the western U.S. since 1981 has been driven by wintertime precipitation trends in the U.S. southwest.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"57 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Much Does Land-Atmosphere Coupling Influence Summertime Temperature Variability in the Western United States?\",\"authors\":\"Lucas R. Vargas Zeppetello, Lily N. Zhang, David S. Battisti, Marysa M. Laguë\",\"doi\":\"10.1175/jcli-d-23-0716.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Interannual fluctuations in average summertime temperatures across the western United States are captured by a leading EOF that explains over 50% of the total observed variance. In this paper, we explain the origins of this pattern of interannual temperature variability by examining soil moisture-temperature coupling that acts across seasons in observations and climate models. We find that a characteristic pattern of coupled temperature-soil moisture climate variability accounts for 34% of the total observed variance in summertime temperature across the region. This pattern is reproduced in state-of-the-art global climate models, where experiments that eliminate soil moisture variability reduce summertime average temperature variance by a factor of three on average. We use an idealized model of the coupled atmospheric boundary layer and underlying land surface to demonstrate that feedbacks between soil moisture, boundary layer relative humidity, and precipitation can explain the observed relations between springtime soil moisture and summertime temperature. Our results suggest that antecedent soil moisture conditions and subsequent land-atmosphere interactions play an important role in interannual summertime temperature variability in the western U.S.; soil moisture variations cause distal temperature anomalies and impart predictability at timescales longer than one season. Our results indicate that 40% of the observed warming trend across the western U.S. since 1981 has been driven by wintertime precipitation trends in the U.S. southwest.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0716.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0716.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 美国西部夏季平均气温的年际波动被一个领先的 EOF 所捕捉,该 EOF 解释了超过 50%的观测总方差。在本文中,我们通过研究观测和气候模式中跨季节作用的土壤水分-温度耦合,解释了这种温度年际变化模式的起源。我们发现,温度-土壤水分耦合气候变异的特征模式占整个地区夏季温度观测总变异的 34%。这种模式在最先进的全球气候模型中得到了再现,在消除土壤水分变异性的实验中,夏季平均气温差异平均减少了三倍。我们利用一个理想化的大气边界层和下层地表耦合模型来证明,土壤水分、边界层相对湿度和降水之间的反馈作用可以解释观测到的春季土壤水分和夏季气温之间的关系。我们的研究结果表明,土壤水分的先期条件和随后的陆地-大气相互作用在美国西部夏季气温年际变化中起着重要作用;土壤水分变化会导致远端气温异常,并在超过一季的时间尺度上带来可预测性。我们的研究结果表明,自 1981 年以来美国西部观测到的变暖趋势中,有 40% 是由美国西南部冬季降水趋势驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Much Does Land-Atmosphere Coupling Influence Summertime Temperature Variability in the Western United States?
Abstract Interannual fluctuations in average summertime temperatures across the western United States are captured by a leading EOF that explains over 50% of the total observed variance. In this paper, we explain the origins of this pattern of interannual temperature variability by examining soil moisture-temperature coupling that acts across seasons in observations and climate models. We find that a characteristic pattern of coupled temperature-soil moisture climate variability accounts for 34% of the total observed variance in summertime temperature across the region. This pattern is reproduced in state-of-the-art global climate models, where experiments that eliminate soil moisture variability reduce summertime average temperature variance by a factor of three on average. We use an idealized model of the coupled atmospheric boundary layer and underlying land surface to demonstrate that feedbacks between soil moisture, boundary layer relative humidity, and precipitation can explain the observed relations between springtime soil moisture and summertime temperature. Our results suggest that antecedent soil moisture conditions and subsequent land-atmosphere interactions play an important role in interannual summertime temperature variability in the western U.S.; soil moisture variations cause distal temperature anomalies and impart predictability at timescales longer than one season. Our results indicate that 40% of the observed warming trend across the western U.S. since 1981 has been driven by wintertime precipitation trends in the U.S. southwest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信