{"title":"物理和化学交联水凝胶的弹道和爆炸相关高速材料特性","authors":"E. C. Bremer-Sai, J. Yang, A. McGhee, C. Franck","doi":"10.1007/s11340-024-01043-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Hydrogels are one of the most ubiquitous polymeric materials. Among them gelatin, agarose and polyacrylamide-based formulations have been effectively utilized in a variety of biomedical and defense-related applications including ultrasound-based therapies and soft tissue injury investigations stemming from ballistic and blast exposures. Interestingly, while in most cases accurate prediction of the mechanical response of these surrogate gels requires knowledge of the underlying finite deformation, high-strain rate material properties, it is these properties that have remained scarce in the literature.</p><h3>Objective</h3><p>Building on our prior works using Inertial Microcavitation Rheometry (IMR), here we present a comprehensive list of the high-strain rate (> 10<span>\\(^3\\)</span> 1/s) mechanical properties of these three popular classes of hydrogel materials characterized via laser-based IMR, further showing that the choice in finite-deformation, rate-dependent constitutive model can be informed directly by the type of crosslinking mechanism and resultant network structure of the hydrogel, thus providing a chemophysical basis of the the choice of phenomenological constitutive model.</p><h3>Methods</h3><p>We analyze existing experimental gelatin IMR datasets and compare the results with prior data on polyacrylamide.</p><h3>Results</h3><p>We show that a Neo-Hookean Kelvin-Voigt (NHKV) model can suitably simulate the high-rate material response of dynamic, physically crosslinked hydrogels like gelatin, while the introduction of a strain-stiffening parameter through the use of the quadratic Kelvin-Voigt (qKV) model was necessary to appropriately model chemically crosslinked hydrogels such as polyacrylamide due to the nature of the static,covalent bonds that comprise their structure.</p><h3>Conclusions</h3><p>In this brief we show that knowledge of the type of underlying polymer structure, including its bond mobility, can directly inform the appropriate finite deformation, time-dependent viscoelastic material model for commonly employed tissue surrogate hydrogels undergoing high strain rate loading within the ballistic and blast regimes.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 4","pages":"587 - 592"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01043-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Ballistic and Blast-Relevant, High-Rate Material Properties of Physically and Chemically Crosslinked Hydrogels\",\"authors\":\"E. C. Bremer-Sai, J. Yang, A. McGhee, C. Franck\",\"doi\":\"10.1007/s11340-024-01043-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Hydrogels are one of the most ubiquitous polymeric materials. Among them gelatin, agarose and polyacrylamide-based formulations have been effectively utilized in a variety of biomedical and defense-related applications including ultrasound-based therapies and soft tissue injury investigations stemming from ballistic and blast exposures. Interestingly, while in most cases accurate prediction of the mechanical response of these surrogate gels requires knowledge of the underlying finite deformation, high-strain rate material properties, it is these properties that have remained scarce in the literature.</p><h3>Objective</h3><p>Building on our prior works using Inertial Microcavitation Rheometry (IMR), here we present a comprehensive list of the high-strain rate (> 10<span>\\\\(^3\\\\)</span> 1/s) mechanical properties of these three popular classes of hydrogel materials characterized via laser-based IMR, further showing that the choice in finite-deformation, rate-dependent constitutive model can be informed directly by the type of crosslinking mechanism and resultant network structure of the hydrogel, thus providing a chemophysical basis of the the choice of phenomenological constitutive model.</p><h3>Methods</h3><p>We analyze existing experimental gelatin IMR datasets and compare the results with prior data on polyacrylamide.</p><h3>Results</h3><p>We show that a Neo-Hookean Kelvin-Voigt (NHKV) model can suitably simulate the high-rate material response of dynamic, physically crosslinked hydrogels like gelatin, while the introduction of a strain-stiffening parameter through the use of the quadratic Kelvin-Voigt (qKV) model was necessary to appropriately model chemically crosslinked hydrogels such as polyacrylamide due to the nature of the static,covalent bonds that comprise their structure.</p><h3>Conclusions</h3><p>In this brief we show that knowledge of the type of underlying polymer structure, including its bond mobility, can directly inform the appropriate finite deformation, time-dependent viscoelastic material model for commonly employed tissue surrogate hydrogels undergoing high strain rate loading within the ballistic and blast regimes.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"64 4\",\"pages\":\"587 - 592\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11340-024-01043-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-024-01043-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01043-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Ballistic and Blast-Relevant, High-Rate Material Properties of Physically and Chemically Crosslinked Hydrogels
Background
Hydrogels are one of the most ubiquitous polymeric materials. Among them gelatin, agarose and polyacrylamide-based formulations have been effectively utilized in a variety of biomedical and defense-related applications including ultrasound-based therapies and soft tissue injury investigations stemming from ballistic and blast exposures. Interestingly, while in most cases accurate prediction of the mechanical response of these surrogate gels requires knowledge of the underlying finite deformation, high-strain rate material properties, it is these properties that have remained scarce in the literature.
Objective
Building on our prior works using Inertial Microcavitation Rheometry (IMR), here we present a comprehensive list of the high-strain rate (> 10\(^3\) 1/s) mechanical properties of these three popular classes of hydrogel materials characterized via laser-based IMR, further showing that the choice in finite-deformation, rate-dependent constitutive model can be informed directly by the type of crosslinking mechanism and resultant network structure of the hydrogel, thus providing a chemophysical basis of the the choice of phenomenological constitutive model.
Methods
We analyze existing experimental gelatin IMR datasets and compare the results with prior data on polyacrylamide.
Results
We show that a Neo-Hookean Kelvin-Voigt (NHKV) model can suitably simulate the high-rate material response of dynamic, physically crosslinked hydrogels like gelatin, while the introduction of a strain-stiffening parameter through the use of the quadratic Kelvin-Voigt (qKV) model was necessary to appropriately model chemically crosslinked hydrogels such as polyacrylamide due to the nature of the static,covalent bonds that comprise their structure.
Conclusions
In this brief we show that knowledge of the type of underlying polymer structure, including its bond mobility, can directly inform the appropriate finite deformation, time-dependent viscoelastic material model for commonly employed tissue surrogate hydrogels undergoing high strain rate loading within the ballistic and blast regimes.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.