潮汐河口的湍流粘度和流动阻力

IF 0.9 4区 环境科学与生态学 Q4 WATER RESOURCES
A. M. Alabyan, E. D. Panchenko
{"title":"潮汐河口的湍流粘度和流动阻力","authors":"A. M. Alabyan, E. D. Panchenko","doi":"10.1134/s0097807823602224","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Field hydrometric studies at the estuaries of the White Sea basin yielded data on some hydrodynamic features of reverse tidal currents. Among the mouth areas of tidal rivers studied in 2015–2022, the most interesting results were obtained at the mesotidal Kyanda estuary, flowing into Onega Bay, and at the macrotidal Syomzha estuary, flowing into Mezen estuary. The essence of the method used in the field studies is synchronic measurements of water flow by acoustic Doppler profilers and water levels by autonomous barometric recorders in two cross-sections, located at different distances from the river mouth, during an entire semidiurnal tidal cycle. The results of these measurements were used to evaluate the terms of Saint-Venant equation of motion and the roughness coefficients. It was found that in the tidal rivers, the flow resistance varies considerably during a tidal cycle. In periods of quasi-steady water flow in both directions during flood and ebb, the values of the Darcy–Weisbach friction factor are 0.04–0.07, as is typical for rivers with similar morphological channel pattern and characteristics. However, in several cases, in periods close to slack water, the friction factor took negative values. A possible explanation of this phenomenon is a negative turbulent viscosity, which manifests itself in some phases of the tidal cycle, when the energy of eddy formations can be transferred to the translational motion of the water mass.</p>","PeriodicalId":49368,"journal":{"name":"Water Resources","volume":"3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent Viscosity and Flow Resistance in Tidal Estuaries\",\"authors\":\"A. M. Alabyan, E. D. Panchenko\",\"doi\":\"10.1134/s0097807823602224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Field hydrometric studies at the estuaries of the White Sea basin yielded data on some hydrodynamic features of reverse tidal currents. Among the mouth areas of tidal rivers studied in 2015–2022, the most interesting results were obtained at the mesotidal Kyanda estuary, flowing into Onega Bay, and at the macrotidal Syomzha estuary, flowing into Mezen estuary. The essence of the method used in the field studies is synchronic measurements of water flow by acoustic Doppler profilers and water levels by autonomous barometric recorders in two cross-sections, located at different distances from the river mouth, during an entire semidiurnal tidal cycle. The results of these measurements were used to evaluate the terms of Saint-Venant equation of motion and the roughness coefficients. It was found that in the tidal rivers, the flow resistance varies considerably during a tidal cycle. In periods of quasi-steady water flow in both directions during flood and ebb, the values of the Darcy–Weisbach friction factor are 0.04–0.07, as is typical for rivers with similar morphological channel pattern and characteristics. However, in several cases, in periods close to slack water, the friction factor took negative values. A possible explanation of this phenomenon is a negative turbulent viscosity, which manifests itself in some phases of the tidal cycle, when the energy of eddy formations can be transferred to the translational motion of the water mass.</p>\",\"PeriodicalId\":49368,\"journal\":{\"name\":\"Water Resources\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1134/s0097807823602224\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1134/s0097807823602224","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在白海盆地河口进行的实地水文研究获得了有关逆潮流水动力特征的数据。在 2015-2022 年研究的潮汐河流河口地区中,流入奥涅加湾的中潮汐京达河口和流入梅津河口的大潮汐叙姆扎河口获得了最有趣的结果。实地研究采用的方法主要是在整个半昼夜潮汐周期内,在距离河口不同距离的两个断面上,用声学多普勒剖面仪同步测量水流,用自主气压记录仪同步测量水位。这些测量结果用于评估圣-维南运动方程的项和粗糙度系数。结果发现,在潮汐河流中,水流阻力在一个潮汐周期内变化很大。在洪水期和退潮期的双向准稳定水流中,达西-韦斯巴赫摩擦因数的值为 0.04-0.07,这在具有类似形态河道模式和特征的河流中很典型。然而,在接近枯水期时,有几次摩擦因数为负值。这种现象的一个可能解释是负湍流粘度,在潮汐周期的某些阶段表现为负湍流粘度,此时涡流形成的能量可以转移到水体的平移运动上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turbulent Viscosity and Flow Resistance in Tidal Estuaries

Turbulent Viscosity and Flow Resistance in Tidal Estuaries

Abstract

Field hydrometric studies at the estuaries of the White Sea basin yielded data on some hydrodynamic features of reverse tidal currents. Among the mouth areas of tidal rivers studied in 2015–2022, the most interesting results were obtained at the mesotidal Kyanda estuary, flowing into Onega Bay, and at the macrotidal Syomzha estuary, flowing into Mezen estuary. The essence of the method used in the field studies is synchronic measurements of water flow by acoustic Doppler profilers and water levels by autonomous barometric recorders in two cross-sections, located at different distances from the river mouth, during an entire semidiurnal tidal cycle. The results of these measurements were used to evaluate the terms of Saint-Venant equation of motion and the roughness coefficients. It was found that in the tidal rivers, the flow resistance varies considerably during a tidal cycle. In periods of quasi-steady water flow in both directions during flood and ebb, the values of the Darcy–Weisbach friction factor are 0.04–0.07, as is typical for rivers with similar morphological channel pattern and characteristics. However, in several cases, in periods close to slack water, the friction factor took negative values. A possible explanation of this phenomenon is a negative turbulent viscosity, which manifests itself in some phases of the tidal cycle, when the energy of eddy formations can be transferred to the translational motion of the water mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources
Water Resources 环境科学-水资源
CiteScore
1.60
自引率
20.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Water Resources is a journal that publishes articles on the assessment of water resources, integrated water resource use, water quality, and environmental protection. The journal covers many areas of research, including prediction of variations in continental water resources and regime; hydrophysical, hydrodynamic, hydrochemical and hydrobiological processes, environmental aspects of water quality and protection; economic, social, and legal aspects of water-resource development; and experimental methods of studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信