{"title":"线性系统和最小二乘问题的有界扰动弹性迭代法:基于算子的方法、分析和性能评估","authors":"Mokhtar Abbasi, Touraj Nikazad","doi":"10.1007/s10543-024-01015-y","DOIUrl":null,"url":null,"abstract":"<p>We examine some bounded perturbations resilient iterative methods for addressing (constrained) consistent linear systems of equations and (constrained) least squares problems. We introduce multiple frameworks rooted in the operator of the Landweber iteration, adapting the operators to facilitate the minimization of absolute errors or residuals. We demonstrate that our operator-based methods exhibit comparable speed to powerful methods like CGLS, and we establish that the computational cost of our methods is nearly equal to that of CGLS. Furthermore, our methods possess the capability to handle constraints (e.g. non-negativity) and control the semi-convergence phenomenon. In addition, we provide convergence analysis of the methods when the current iterations are perturbed by summable vectors. This allows us to utilize these iterative methods for the superiorization methodology. We showcase their performance using examples drawn from tomographic imaging and compare them with CGLS, superiorized conjugate gradient (S-CG), and the non-negative flexible CGLS (NN-FCGLS) methods.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"14 2 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded perturbations resilient iterative methods for linear systems and least squares problems: operator-based approaches, analysis, and performance evaluation\",\"authors\":\"Mokhtar Abbasi, Touraj Nikazad\",\"doi\":\"10.1007/s10543-024-01015-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We examine some bounded perturbations resilient iterative methods for addressing (constrained) consistent linear systems of equations and (constrained) least squares problems. We introduce multiple frameworks rooted in the operator of the Landweber iteration, adapting the operators to facilitate the minimization of absolute errors or residuals. We demonstrate that our operator-based methods exhibit comparable speed to powerful methods like CGLS, and we establish that the computational cost of our methods is nearly equal to that of CGLS. Furthermore, our methods possess the capability to handle constraints (e.g. non-negativity) and control the semi-convergence phenomenon. In addition, we provide convergence analysis of the methods when the current iterations are perturbed by summable vectors. This allows us to utilize these iterative methods for the superiorization methodology. We showcase their performance using examples drawn from tomographic imaging and compare them with CGLS, superiorized conjugate gradient (S-CG), and the non-negative flexible CGLS (NN-FCGLS) methods.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"14 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01015-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01015-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Bounded perturbations resilient iterative methods for linear systems and least squares problems: operator-based approaches, analysis, and performance evaluation
We examine some bounded perturbations resilient iterative methods for addressing (constrained) consistent linear systems of equations and (constrained) least squares problems. We introduce multiple frameworks rooted in the operator of the Landweber iteration, adapting the operators to facilitate the minimization of absolute errors or residuals. We demonstrate that our operator-based methods exhibit comparable speed to powerful methods like CGLS, and we establish that the computational cost of our methods is nearly equal to that of CGLS. Furthermore, our methods possess the capability to handle constraints (e.g. non-negativity) and control the semi-convergence phenomenon. In addition, we provide convergence analysis of the methods when the current iterations are perturbed by summable vectors. This allows us to utilize these iterative methods for the superiorization methodology. We showcase their performance using examples drawn from tomographic imaging and compare them with CGLS, superiorized conjugate gradient (S-CG), and the non-negative flexible CGLS (NN-FCGLS) methods.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.