双方格多图中最大匹配数的锐下限

Pub Date : 2024-03-03 DOI:10.1002/jgt.23080
Alexandr V. Kostochka, Douglas B. West, Zimu Xiang
{"title":"双方格多图中最大匹配数的锐下限","authors":"Alexandr V. Kostochka,&nbsp;Douglas B. West,&nbsp;Zimu Xiang","doi":"10.1002/jgt.23080","DOIUrl":null,"url":null,"abstract":"<p>We study the minimum number of maximum matchings in a bipartite multigraph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with parts <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n </mrow>\n <annotation> $Y$</annotation>\n </semantics></math> under various conditions, refining the well-known lower bound due to M. Hall. When <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>X</mi>\n <mo>∣</mo>\n <mo>=</mo>\n <mi>n</mi>\n </mrow>\n <annotation> $| X| =n$</annotation>\n </semantics></math>, every vertex in <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> has degree at least <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>, and every vertex in <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> has at least <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> distinct neighbors, the minimum is <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>!</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>r</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $r!(k-r+1)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mi>r</mi>\n </mrow>\n <annotation> $n\\ge r$</annotation>\n </semantics></math> and is <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mi>r</mi>\n <mo>+</mo>\n <mi>n</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>r</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>]</mo>\n </mrow>\n <msubsup>\n <mo>∏</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>r</mi>\n <mo>−</mo>\n <mi>i</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $[r+n(k-r)]{\\prod }_{i=1}^{n-1}(r-i)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≤</mo>\n <mi>r</mi>\n </mrow>\n <annotation> $n\\le r$</annotation>\n </semantics></math>. When every vertex has at least two neighbors and <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>Y</mi>\n <mo>∣</mo>\n <mo>−</mo>\n <mo>∣</mo>\n <mi>X</mi>\n <mo>∣</mo>\n <mo>=</mo>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation> $| Y| -| X| =t\\ge 0$</annotation>\n </semantics></math>, the minimum is <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>t</mi>\n <mo>+</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mi>b</mi>\n </mrow>\n <mo>]</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>t</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $[(n-1)t+2+b](t+1)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mo>=</mo>\n <mo>∣</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $b=| E(G)| -2(n+t)$</annotation>\n </semantics></math>. We also determine the minimum number of maximum matchings in several other situations. We provide a variety of sharpness constructions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp lower bounds for the number of maximum matchings in bipartite multigraphs\",\"authors\":\"Alexandr V. Kostochka,&nbsp;Douglas B. West,&nbsp;Zimu Xiang\",\"doi\":\"10.1002/jgt.23080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the minimum number of maximum matchings in a bipartite multigraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with parts <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n </mrow>\\n <annotation> $Y$</annotation>\\n </semantics></math> under various conditions, refining the well-known lower bound due to M. Hall. When <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>X</mi>\\n <mo>∣</mo>\\n <mo>=</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $| X| =n$</annotation>\\n </semantics></math>, every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> has degree at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>, and every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> has at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> distinct neighbors, the minimum is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>!</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>r</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $r!(k-r+1)$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $n\\\\ge r$</annotation>\\n </semantics></math> and is <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mi>r</mi>\\n <mo>+</mo>\\n <mi>n</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>r</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <msubsup>\\n <mo>∏</mo>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mi>i</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $[r+n(k-r)]{\\\\prod }_{i=1}^{n-1}(r-i)$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≤</mo>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $n\\\\le r$</annotation>\\n </semantics></math>. When every vertex has at least two neighbors and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>Y</mi>\\n <mo>∣</mo>\\n <mo>−</mo>\\n <mo>∣</mo>\\n <mi>X</mi>\\n <mo>∣</mo>\\n <mo>=</mo>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> $| Y| -| X| =t\\\\ge 0$</annotation>\\n </semantics></math>, the minimum is <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mi>t</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mi>b</mi>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>t</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $[(n-1)t+2+b](t+1)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mo>=</mo>\\n <mo>∣</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mi>t</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $b=| E(G)| -2(n+t)$</annotation>\\n </semantics></math>. We also determine the minimum number of maximum matchings in several other situations. We provide a variety of sharpness constructions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有部分 和 的双方形多图在各种条件下的最大匹配数的最小值,完善了霍尔(M. Hall)提出的著名下界。当 ,中的每个顶点都至少有度 ,且每个顶点都至少有不同的邻居时,最小匹配数为 ,且 为 。当每个顶点至少有两个邻居且 时,最小值为 ,其中 。我们还确定了其他几种情况下最大匹配数的最小值。我们提供了多种锐度构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sharp lower bounds for the number of maximum matchings in bipartite multigraphs

We study the minimum number of maximum matchings in a bipartite multigraph G $G$ with parts X $X$ and Y $Y$ under various conditions, refining the well-known lower bound due to M. Hall. When X = n $| X| =n$ , every vertex in X $X$ has degree at least k $k$ , and every vertex in X $X$ has at least r $r$ distinct neighbors, the minimum is r ! ( k r + 1 ) $r!(k-r+1)$ when n r $n\ge r$ and is [ r + n ( k r ) ] i = 1 n 1 ( r i ) $[r+n(k-r)]{\prod }_{i=1}^{n-1}(r-i)$ when n r $n\le r$ . When every vertex has at least two neighbors and Y X = t 0 $| Y| -| X| =t\ge 0$ , the minimum is [ ( n 1 ) t + 2 + b ] ( t + 1 ) $[(n-1)t+2+b](t+1)$ , where b = E ( G ) 2 ( n + t ) $b=| E(G)| -2(n+t)$ . We also determine the minimum number of maximum matchings in several other situations. We provide a variety of sharpness constructions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信