双方格多图中最大匹配数的锐下限

IF 0.9 3区 数学 Q2 MATHEMATICS
Alexandr V. Kostochka, Douglas B. West, Zimu Xiang
{"title":"双方格多图中最大匹配数的锐下限","authors":"Alexandr V. Kostochka,&nbsp;Douglas B. West,&nbsp;Zimu Xiang","doi":"10.1002/jgt.23080","DOIUrl":null,"url":null,"abstract":"<p>We study the minimum number of maximum matchings in a bipartite multigraph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with parts <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n </mrow>\n <annotation> $Y$</annotation>\n </semantics></math> under various conditions, refining the well-known lower bound due to M. Hall. When <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>X</mi>\n <mo>∣</mo>\n <mo>=</mo>\n <mi>n</mi>\n </mrow>\n <annotation> $| X| =n$</annotation>\n </semantics></math>, every vertex in <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> has degree at least <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>, and every vertex in <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> has at least <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> distinct neighbors, the minimum is <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>!</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>r</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $r!(k-r+1)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mi>r</mi>\n </mrow>\n <annotation> $n\\ge r$</annotation>\n </semantics></math> and is <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mi>r</mi>\n <mo>+</mo>\n <mi>n</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>r</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>]</mo>\n </mrow>\n <msubsup>\n <mo>∏</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>r</mi>\n <mo>−</mo>\n <mi>i</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $[r+n(k-r)]{\\prod }_{i=1}^{n-1}(r-i)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≤</mo>\n <mi>r</mi>\n </mrow>\n <annotation> $n\\le r$</annotation>\n </semantics></math>. When every vertex has at least two neighbors and <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>Y</mi>\n <mo>∣</mo>\n <mo>−</mo>\n <mo>∣</mo>\n <mi>X</mi>\n <mo>∣</mo>\n <mo>=</mo>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation> $| Y| -| X| =t\\ge 0$</annotation>\n </semantics></math>, the minimum is <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>t</mi>\n <mo>+</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mi>b</mi>\n </mrow>\n <mo>]</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>t</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $[(n-1)t+2+b](t+1)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mo>=</mo>\n <mo>∣</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $b=| E(G)| -2(n+t)$</annotation>\n </semantics></math>. We also determine the minimum number of maximum matchings in several other situations. We provide a variety of sharpness constructions.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 3","pages":"525-555"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp lower bounds for the number of maximum matchings in bipartite multigraphs\",\"authors\":\"Alexandr V. Kostochka,&nbsp;Douglas B. West,&nbsp;Zimu Xiang\",\"doi\":\"10.1002/jgt.23080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the minimum number of maximum matchings in a bipartite multigraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with parts <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n </mrow>\\n <annotation> $Y$</annotation>\\n </semantics></math> under various conditions, refining the well-known lower bound due to M. Hall. When <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>X</mi>\\n <mo>∣</mo>\\n <mo>=</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $| X| =n$</annotation>\\n </semantics></math>, every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> has degree at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>, and every vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> has at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> distinct neighbors, the minimum is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>!</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>r</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $r!(k-r+1)$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $n\\\\ge r$</annotation>\\n </semantics></math> and is <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mi>r</mi>\\n <mo>+</mo>\\n <mi>n</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>r</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <msubsup>\\n <mo>∏</mo>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mi>i</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $[r+n(k-r)]{\\\\prod }_{i=1}^{n-1}(r-i)$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≤</mo>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $n\\\\le r$</annotation>\\n </semantics></math>. When every vertex has at least two neighbors and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>Y</mi>\\n <mo>∣</mo>\\n <mo>−</mo>\\n <mo>∣</mo>\\n <mi>X</mi>\\n <mo>∣</mo>\\n <mo>=</mo>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> $| Y| -| X| =t\\\\ge 0$</annotation>\\n </semantics></math>, the minimum is <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mi>t</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mi>b</mi>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>t</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $[(n-1)t+2+b](t+1)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mo>=</mo>\\n <mo>∣</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mi>t</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $b=| E(G)| -2(n+t)$</annotation>\\n </semantics></math>. We also determine the minimum number of maximum matchings in several other situations. We provide a variety of sharpness constructions.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 3\",\"pages\":\"525-555\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23080\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23080","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有部分 和 的双方形多图在各种条件下的最大匹配数的最小值,完善了霍尔(M. Hall)提出的著名下界。当 ,中的每个顶点都至少有度 ,且每个顶点都至少有不同的邻居时,最小匹配数为 ,且 为 。当每个顶点至少有两个邻居且 时,最小值为 ,其中 。我们还确定了其他几种情况下最大匹配数的最小值。我们提供了多种锐度构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp lower bounds for the number of maximum matchings in bipartite multigraphs

We study the minimum number of maximum matchings in a bipartite multigraph G $G$ with parts X $X$ and Y $Y$ under various conditions, refining the well-known lower bound due to M. Hall. When X = n $| X| =n$ , every vertex in X $X$ has degree at least k $k$ , and every vertex in X $X$ has at least r $r$ distinct neighbors, the minimum is r ! ( k r + 1 ) $r!(k-r+1)$ when n r $n\ge r$ and is [ r + n ( k r ) ] i = 1 n 1 ( r i ) $[r+n(k-r)]{\prod }_{i=1}^{n-1}(r-i)$ when n r $n\le r$ . When every vertex has at least two neighbors and Y X = t 0 $| Y| -| X| =t\ge 0$ , the minimum is [ ( n 1 ) t + 2 + b ] ( t + 1 ) $[(n-1)t+2+b](t+1)$ , where b = E ( G ) 2 ( n + t ) $b=| E(G)| -2(n+t)$ . We also determine the minimum number of maximum matchings in several other situations. We provide a variety of sharpness constructions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信