Chong Li, Balapuwaduge Lihini Mendis, Lisa Holland, Peng Li
{"title":"研究液体存在对振动尖头毛细管产生的声流的影响","authors":"Chong Li, Balapuwaduge Lihini Mendis, Lisa Holland, Peng Li","doi":"10.1007/s10404-024-02713-3","DOIUrl":null,"url":null,"abstract":"<div><p>Sharp edge structures have been demonstrated as an efficient way of generating acoustic streaming in microfluidic devices, which finds numerous applications in fluid mixing, pumping, particle actuation, and cell lysis. A sharp tip capillary is widely available means of generating sharp structures without the need of microfabrication, which has been used for studying enzyme kinetics, droplet digital PCR, and mass spectrometry analysis. In this work, we studied the influence of liquid inside the vibrating glass capillary on its efficiency of generating acoustic streaming. Using fluorescence microscopy and fluorescent particles, we observed that adding liquid to the inside of the vibrating glass capillary changed the streaming patterns as well as led to increased streaming velocity. Based on the observed streaming patterns, we hypothesized the liquid present in the capillary changed vibration mode of the capillary, which is matched with COMSOL simulations. Finally, the utility of the liquid filled vibrating capillary was demonstrated for higher energy efficiency for fluid mixing and mass spectrometry experiments. This study will provide useful guidance when optimizing the efficiency of vibrating sharp tip capillary systems.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the impact of liquid presence on the acoustic streaming generated by a vibrating sharp tip capillary\",\"authors\":\"Chong Li, Balapuwaduge Lihini Mendis, Lisa Holland, Peng Li\",\"doi\":\"10.1007/s10404-024-02713-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sharp edge structures have been demonstrated as an efficient way of generating acoustic streaming in microfluidic devices, which finds numerous applications in fluid mixing, pumping, particle actuation, and cell lysis. A sharp tip capillary is widely available means of generating sharp structures without the need of microfabrication, which has been used for studying enzyme kinetics, droplet digital PCR, and mass spectrometry analysis. In this work, we studied the influence of liquid inside the vibrating glass capillary on its efficiency of generating acoustic streaming. Using fluorescence microscopy and fluorescent particles, we observed that adding liquid to the inside of the vibrating glass capillary changed the streaming patterns as well as led to increased streaming velocity. Based on the observed streaming patterns, we hypothesized the liquid present in the capillary changed vibration mode of the capillary, which is matched with COMSOL simulations. Finally, the utility of the liquid filled vibrating capillary was demonstrated for higher energy efficiency for fluid mixing and mass spectrometry experiments. This study will provide useful guidance when optimizing the efficiency of vibrating sharp tip capillary systems.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02713-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02713-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Investigation of the impact of liquid presence on the acoustic streaming generated by a vibrating sharp tip capillary
Sharp edge structures have been demonstrated as an efficient way of generating acoustic streaming in microfluidic devices, which finds numerous applications in fluid mixing, pumping, particle actuation, and cell lysis. A sharp tip capillary is widely available means of generating sharp structures without the need of microfabrication, which has been used for studying enzyme kinetics, droplet digital PCR, and mass spectrometry analysis. In this work, we studied the influence of liquid inside the vibrating glass capillary on its efficiency of generating acoustic streaming. Using fluorescence microscopy and fluorescent particles, we observed that adding liquid to the inside of the vibrating glass capillary changed the streaming patterns as well as led to increased streaming velocity. Based on the observed streaming patterns, we hypothesized the liquid present in the capillary changed vibration mode of the capillary, which is matched with COMSOL simulations. Finally, the utility of the liquid filled vibrating capillary was demonstrated for higher energy efficiency for fluid mixing and mass spectrometry experiments. This study will provide useful guidance when optimizing the efficiency of vibrating sharp tip capillary systems.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).