Alice Di Donna , Angela Casarella , Alessandro Tarantino
{"title":"从微观机械角度看粘土的热机械行为","authors":"Alice Di Donna , Angela Casarella , Alessandro Tarantino","doi":"10.1016/j.gete.2024.100549","DOIUrl":null,"url":null,"abstract":"<div><p>The response of fine-grained soils to the combined effects of stress and temperature is a problem of growing concern in geoenvironmental engineering. Unlike most materials, fine-grained soils subjected to heating under drained conditions can exhibit either reversible expansion or irreversible contraction, depending on their loading history. This clay complex thermo-mechanical behaviour is widely reported in the literature, but its origin is still unknown. This paper explores the particle-scale origin of clay thermo-mechanical behaviour and helps to inform constitutive thermo-mechanical models. Clay particle interactions include non-contact forces, which are electrochemical in nature and prevail in face-to-face configuration and contact forces, which are mechanical forces transferred from one particle to another through a contact surface, typical of edge-to-face configuration. Non-contact forces include electrostatic Coulombic forces and van der Waals attractive forces. This paper proposes a combined numerical and analytical approach to quantify the elementary interactions between clay particles. The results are used to interpret typical stress-thermal paths, such as compression tests at different temperatures and heating-cooling cycles at constant mechanical stress. It is concluded that the electrochemical interactions governing the face-to-face particle configuration can only explain the elastic volumetric response of over-consolidated clays subjected to heating. The thermo-plastic behaviour associated with the reduction of the pre-consolidation pressure with temperature and the volumetric plastic compressive strain in response to heating in normally-consolidated clays is attributed to the edge-to-face particle configurations.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100549"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A micro-mechanical insight into the thermo-mechanical behaviour of clays\",\"authors\":\"Alice Di Donna , Angela Casarella , Alessandro Tarantino\",\"doi\":\"10.1016/j.gete.2024.100549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The response of fine-grained soils to the combined effects of stress and temperature is a problem of growing concern in geoenvironmental engineering. Unlike most materials, fine-grained soils subjected to heating under drained conditions can exhibit either reversible expansion or irreversible contraction, depending on their loading history. This clay complex thermo-mechanical behaviour is widely reported in the literature, but its origin is still unknown. This paper explores the particle-scale origin of clay thermo-mechanical behaviour and helps to inform constitutive thermo-mechanical models. Clay particle interactions include non-contact forces, which are electrochemical in nature and prevail in face-to-face configuration and contact forces, which are mechanical forces transferred from one particle to another through a contact surface, typical of edge-to-face configuration. Non-contact forces include electrostatic Coulombic forces and van der Waals attractive forces. This paper proposes a combined numerical and analytical approach to quantify the elementary interactions between clay particles. The results are used to interpret typical stress-thermal paths, such as compression tests at different temperatures and heating-cooling cycles at constant mechanical stress. It is concluded that the electrochemical interactions governing the face-to-face particle configuration can only explain the elastic volumetric response of over-consolidated clays subjected to heating. The thermo-plastic behaviour associated with the reduction of the pre-consolidation pressure with temperature and the volumetric plastic compressive strain in response to heating in normally-consolidated clays is attributed to the edge-to-face particle configurations.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"38 \",\"pages\":\"Article 100549\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000169\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000169","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A micro-mechanical insight into the thermo-mechanical behaviour of clays
The response of fine-grained soils to the combined effects of stress and temperature is a problem of growing concern in geoenvironmental engineering. Unlike most materials, fine-grained soils subjected to heating under drained conditions can exhibit either reversible expansion or irreversible contraction, depending on their loading history. This clay complex thermo-mechanical behaviour is widely reported in the literature, but its origin is still unknown. This paper explores the particle-scale origin of clay thermo-mechanical behaviour and helps to inform constitutive thermo-mechanical models. Clay particle interactions include non-contact forces, which are electrochemical in nature and prevail in face-to-face configuration and contact forces, which are mechanical forces transferred from one particle to another through a contact surface, typical of edge-to-face configuration. Non-contact forces include electrostatic Coulombic forces and van der Waals attractive forces. This paper proposes a combined numerical and analytical approach to quantify the elementary interactions between clay particles. The results are used to interpret typical stress-thermal paths, such as compression tests at different temperatures and heating-cooling cycles at constant mechanical stress. It is concluded that the electrochemical interactions governing the face-to-face particle configuration can only explain the elastic volumetric response of over-consolidated clays subjected to heating. The thermo-plastic behaviour associated with the reduction of the pre-consolidation pressure with temperature and the volumetric plastic compressive strain in response to heating in normally-consolidated clays is attributed to the edge-to-face particle configurations.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.