{"title":"在与高放射性废物地质处置相关的原位加热实验中,对卡勒沃-牛津粘土岩的破坏和断裂发展进行建模","authors":"Tsubasa Sasaki, Sangcheol Yoon, Jonny Rutqvist","doi":"10.1016/j.gete.2024.100546","DOIUrl":null,"url":null,"abstract":"<div><p>To ensure the safety of geological disposal of high-level radioactive waste, in-situ experiments have been carried out to examine the behavior of rocks in underground research laboratories (URLs). At the Meuse/Haute-Marne URL in France, the French National Radioactive Waste Management Agency (Andra) has been assessing the Callovo-Oxfordian claystone (COx) as potential host rock of geological disposal by subjecting the COx to in-situ heating mimicking exothermic radioactive waste. Results of the in-situ experiments are used to validate and bolster the numerical simulators for predicting the thermo-hydromechanically (THM) coupled behavior of the COx. The numerical simulators are, however, yet to be tested for predicting the failure and fracture development of the COx during heating, which is of paramount importance to the safety of the geological disposal. In this research, we modelled a recently carried out in-situ experiment at the Meuse/Haute-Marne URL using the TOUGH-FLAC simulator to predict the failure and fracture development of the COx during heating. The objectives are to examine the effects of (i) the weak bedding planes, (ii) the softening rate of matrix/weak plane strengths, and (iii) the stiffness anisotropy of the COx on the development of shear and tensile fractures during heating. Results show that considering failure along the weak planes enabled accurate predictions of fracture development. Also, fracture development intensified at a softening rate beyond a threshold level and the geometry of fractures was significantly affected by the stiffness anisotropy. These results will help boost the reliability of the safety and performance assessment of geological disposal in claystone.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100546"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380824000133/pdfft?md5=09690d33b6c8a660ce58ea3ba55cd9e6&pid=1-s2.0-S2352380824000133-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling of failure and fracture development of the Callovo-Oxfordian claystone during an in-situ heating experiment associated with geological disposal of high-level radioactive waste\",\"authors\":\"Tsubasa Sasaki, Sangcheol Yoon, Jonny Rutqvist\",\"doi\":\"10.1016/j.gete.2024.100546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To ensure the safety of geological disposal of high-level radioactive waste, in-situ experiments have been carried out to examine the behavior of rocks in underground research laboratories (URLs). At the Meuse/Haute-Marne URL in France, the French National Radioactive Waste Management Agency (Andra) has been assessing the Callovo-Oxfordian claystone (COx) as potential host rock of geological disposal by subjecting the COx to in-situ heating mimicking exothermic radioactive waste. Results of the in-situ experiments are used to validate and bolster the numerical simulators for predicting the thermo-hydromechanically (THM) coupled behavior of the COx. The numerical simulators are, however, yet to be tested for predicting the failure and fracture development of the COx during heating, which is of paramount importance to the safety of the geological disposal. In this research, we modelled a recently carried out in-situ experiment at the Meuse/Haute-Marne URL using the TOUGH-FLAC simulator to predict the failure and fracture development of the COx during heating. The objectives are to examine the effects of (i) the weak bedding planes, (ii) the softening rate of matrix/weak plane strengths, and (iii) the stiffness anisotropy of the COx on the development of shear and tensile fractures during heating. Results show that considering failure along the weak planes enabled accurate predictions of fracture development. Also, fracture development intensified at a softening rate beyond a threshold level and the geometry of fractures was significantly affected by the stiffness anisotropy. These results will help boost the reliability of the safety and performance assessment of geological disposal in claystone.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"38 \",\"pages\":\"Article 100546\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000133/pdfft?md5=09690d33b6c8a660ce58ea3ba55cd9e6&pid=1-s2.0-S2352380824000133-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000133\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000133","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modelling of failure and fracture development of the Callovo-Oxfordian claystone during an in-situ heating experiment associated with geological disposal of high-level radioactive waste
To ensure the safety of geological disposal of high-level radioactive waste, in-situ experiments have been carried out to examine the behavior of rocks in underground research laboratories (URLs). At the Meuse/Haute-Marne URL in France, the French National Radioactive Waste Management Agency (Andra) has been assessing the Callovo-Oxfordian claystone (COx) as potential host rock of geological disposal by subjecting the COx to in-situ heating mimicking exothermic radioactive waste. Results of the in-situ experiments are used to validate and bolster the numerical simulators for predicting the thermo-hydromechanically (THM) coupled behavior of the COx. The numerical simulators are, however, yet to be tested for predicting the failure and fracture development of the COx during heating, which is of paramount importance to the safety of the geological disposal. In this research, we modelled a recently carried out in-situ experiment at the Meuse/Haute-Marne URL using the TOUGH-FLAC simulator to predict the failure and fracture development of the COx during heating. The objectives are to examine the effects of (i) the weak bedding planes, (ii) the softening rate of matrix/weak plane strengths, and (iii) the stiffness anisotropy of the COx on the development of shear and tensile fractures during heating. Results show that considering failure along the weak planes enabled accurate predictions of fracture development. Also, fracture development intensified at a softening rate beyond a threshold level and the geometry of fractures was significantly affected by the stiffness anisotropy. These results will help boost the reliability of the safety and performance assessment of geological disposal in claystone.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.