{"title":"作为一氧化氮和相关物质的潜在供体和清除剂的钌大环配合物形成的动力学机制研究","authors":"Juliana Guerreiro Cezar, Tamires Mariel Muniz Milhazes, Kleber Queiroz Ferreira","doi":"10.1007/s11243-024-00575-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the mechanisms of reactions involving complexes with tetraazamacrocyclic (mac) ligands against nitrosyl ligands in an aqueous medium were explored, with emphasis on reactivity to nitric oxide (NO) and analog species, like nitrite ion (NO<sub>2</sub><sup>−</sup>). The reactions between [RuCl(OH<sub>2</sub>)(mac)]<sup>2+</sup> with NO and [RuCl(OH)(mac)]<sup>2+</sup> with NO<sub>2</sub><sup>−</sup> were performed in an aqueous solution within pH 1 or 7, and the rate constants (<i>k</i>) and the thermodynamic parameters (∆<i>H</i><sup>#</sup>, ∆<i>S</i><sup>#</sup>) of activation were determined. The reaction between NO and the complex with cyclen is faster than that with the complex with cyclam. However, the reaction of the cyclen complex with NO<sub>2</sub><sup>−</sup> is slower than NO. This research provides detailed reaction kinetics and thermodynamic activation parameters for these interactions for the first time. In addition, the redox processes of coordinated NO<sup>−</sup> and NO<sub>2</sub><sup>−</sup> ligands to ruthenium were evaluated and the electrochemical release of NO from nitrosyl compounds upon electrochemical potential application. Our findings bring significant contributions in elucidating mechanisms related to NO capture both in vitro and in vivo.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"49 3","pages":"215 - 227"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic-mechanistic studies of ruthenium macrocyclic complexes formation as potential donors and scavengers of nitric oxide and correlated species\",\"authors\":\"Juliana Guerreiro Cezar, Tamires Mariel Muniz Milhazes, Kleber Queiroz Ferreira\",\"doi\":\"10.1007/s11243-024-00575-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the mechanisms of reactions involving complexes with tetraazamacrocyclic (mac) ligands against nitrosyl ligands in an aqueous medium were explored, with emphasis on reactivity to nitric oxide (NO) and analog species, like nitrite ion (NO<sub>2</sub><sup>−</sup>). The reactions between [RuCl(OH<sub>2</sub>)(mac)]<sup>2+</sup> with NO and [RuCl(OH)(mac)]<sup>2+</sup> with NO<sub>2</sub><sup>−</sup> were performed in an aqueous solution within pH 1 or 7, and the rate constants (<i>k</i>) and the thermodynamic parameters (∆<i>H</i><sup>#</sup>, ∆<i>S</i><sup>#</sup>) of activation were determined. The reaction between NO and the complex with cyclen is faster than that with the complex with cyclam. However, the reaction of the cyclen complex with NO<sub>2</sub><sup>−</sup> is slower than NO. This research provides detailed reaction kinetics and thermodynamic activation parameters for these interactions for the first time. In addition, the redox processes of coordinated NO<sup>−</sup> and NO<sub>2</sub><sup>−</sup> ligands to ruthenium were evaluated and the electrochemical release of NO from nitrosyl compounds upon electrochemical potential application. Our findings bring significant contributions in elucidating mechanisms related to NO capture both in vitro and in vivo.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"49 3\",\"pages\":\"215 - 227\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-024-00575-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-024-00575-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了四氮杂环(mac)配体与亚硝基配体在水介质中的反应机理,重点是与一氧化氮(NO)和亚硝酸根离子(NO2-)等类似物的反应性。在 pH 值为 1 或 7 的水溶液中进行了 [RuCl(OH2)(mac)]2+ 与 NO 的反应和 [RuCl(OH)(mac)]2+ 与 NO2- 的反应,并测定了活化的速率常数(k)和热力学参数(ΔH#、ΔS#)。NO 与环烯络合物的反应要快于与环胺络合物的反应。然而,环烯络合物与 NO2- 的反应比 NO 慢。这项研究首次提供了这些相互作用的详细反应动力学和热力学活化参数。此外,还评估了配位 NO- 和 NO2- 配体与钌的氧化还原过程,以及亚硝基化合物在电化学势作用下释放 NO 的电化学过程。我们的研究结果为阐明体外和体内 NO 捕获的相关机制做出了重大贡献。
Kinetic-mechanistic studies of ruthenium macrocyclic complexes formation as potential donors and scavengers of nitric oxide and correlated species
In this paper, the mechanisms of reactions involving complexes with tetraazamacrocyclic (mac) ligands against nitrosyl ligands in an aqueous medium were explored, with emphasis on reactivity to nitric oxide (NO) and analog species, like nitrite ion (NO2−). The reactions between [RuCl(OH2)(mac)]2+ with NO and [RuCl(OH)(mac)]2+ with NO2− were performed in an aqueous solution within pH 1 or 7, and the rate constants (k) and the thermodynamic parameters (∆H#, ∆S#) of activation were determined. The reaction between NO and the complex with cyclen is faster than that with the complex with cyclam. However, the reaction of the cyclen complex with NO2− is slower than NO. This research provides detailed reaction kinetics and thermodynamic activation parameters for these interactions for the first time. In addition, the redox processes of coordinated NO− and NO2− ligands to ruthenium were evaluated and the electrochemical release of NO from nitrosyl compounds upon electrochemical potential application. Our findings bring significant contributions in elucidating mechanisms related to NO capture both in vitro and in vivo.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.