Jing Li , Xiaodong Zhou , Yue Lin , Bingling Liu , Wenyang Chen , Chengcai Liu
{"title":"烷基取代锍盐的合成与抗菌特性","authors":"Jing Li , Xiaodong Zhou , Yue Lin , Bingling Liu , Wenyang Chen , Chengcai Liu","doi":"10.1080/10426507.2024.2323020","DOIUrl":null,"url":null,"abstract":"<div><p>The development of new antibacterial agents is particularly important in the battle against pathogenic microorganisms. In this study, sulfonium ions were used as the structural core to synthesize alkyl-substituted ionic compounds as antibacterial agents. The antimicrobial activity of sulfonium ionic compounds against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em> was analyzed by measurement of the minimum inhibitory concentration and minimum bactericidal concentration. The effects of sulfonium salts on cell membrane integrity and permeability were investigated by detecting the extracellular proteins leakage of <em>E. coli</em> and <em>S. aureus</em> upon contact treatment, and observing the bacteria’s ultrastructural changes with transmission electron microscopy. The results showed that all the sulfonium salts exhibited resistant activity. Sulfonium salt with alkyl chain length of 16 carbon presented the strongest resistance with MIC of 30 and 3.75 μmol/L, and MBC of 120 and 60 μmol/L against <em>E. coli</em> and <em>S. aureus</em>, respectively. After treatment with sulfonium salts, the permeability of the membrane of <em>E. coli</em> and <em>S. aureus</em> cells changed, and the exudation of extracellular proteins increased significantly. The transmission electron microscope showed that the surface of the bacteria had shrunk and the cell walls had burst. The group of sulfonium salt compounds can destroy the integrity of cell membrane and change membrane permeability to achieve antibacterial purposes.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and antibacterial properties of alkyl substituted sulfonium salt\",\"authors\":\"Jing Li , Xiaodong Zhou , Yue Lin , Bingling Liu , Wenyang Chen , Chengcai Liu\",\"doi\":\"10.1080/10426507.2024.2323020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of new antibacterial agents is particularly important in the battle against pathogenic microorganisms. In this study, sulfonium ions were used as the structural core to synthesize alkyl-substituted ionic compounds as antibacterial agents. The antimicrobial activity of sulfonium ionic compounds against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em> was analyzed by measurement of the minimum inhibitory concentration and minimum bactericidal concentration. The effects of sulfonium salts on cell membrane integrity and permeability were investigated by detecting the extracellular proteins leakage of <em>E. coli</em> and <em>S. aureus</em> upon contact treatment, and observing the bacteria’s ultrastructural changes with transmission electron microscopy. The results showed that all the sulfonium salts exhibited resistant activity. Sulfonium salt with alkyl chain length of 16 carbon presented the strongest resistance with MIC of 30 and 3.75 μmol/L, and MBC of 120 and 60 μmol/L against <em>E. coli</em> and <em>S. aureus</em>, respectively. After treatment with sulfonium salts, the permeability of the membrane of <em>E. coli</em> and <em>S. aureus</em> cells changed, and the exudation of extracellular proteins increased significantly. The transmission electron microscope showed that the surface of the bacteria had shrunk and the cell walls had burst. The group of sulfonium salt compounds can destroy the integrity of cell membrane and change membrane permeability to achieve antibacterial purposes.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S104265072400008X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S104265072400008X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and antibacterial properties of alkyl substituted sulfonium salt
The development of new antibacterial agents is particularly important in the battle against pathogenic microorganisms. In this study, sulfonium ions were used as the structural core to synthesize alkyl-substituted ionic compounds as antibacterial agents. The antimicrobial activity of sulfonium ionic compounds against Escherichia coli and Staphylococcus aureus was analyzed by measurement of the minimum inhibitory concentration and minimum bactericidal concentration. The effects of sulfonium salts on cell membrane integrity and permeability were investigated by detecting the extracellular proteins leakage of E. coli and S. aureus upon contact treatment, and observing the bacteria’s ultrastructural changes with transmission electron microscopy. The results showed that all the sulfonium salts exhibited resistant activity. Sulfonium salt with alkyl chain length of 16 carbon presented the strongest resistance with MIC of 30 and 3.75 μmol/L, and MBC of 120 and 60 μmol/L against E. coli and S. aureus, respectively. After treatment with sulfonium salts, the permeability of the membrane of E. coli and S. aureus cells changed, and the exudation of extracellular proteins increased significantly. The transmission electron microscope showed that the surface of the bacteria had shrunk and the cell walls had burst. The group of sulfonium salt compounds can destroy the integrity of cell membrane and change membrane permeability to achieve antibacterial purposes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.