测量资产定价模型中的 "暗物质

IF 7.6 1区 经济学 Q1 BUSINESS, FINANCE
HUI CHEN, WINSTON WEI DOU, LEONID KOGAN
{"title":"测量资产定价模型中的 \"暗物质","authors":"HUI CHEN,&nbsp;WINSTON WEI DOU,&nbsp;LEONID KOGAN","doi":"10.1111/jofi.13317","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark-matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark-matter measure indicates that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models.</p></div>","PeriodicalId":15753,"journal":{"name":"Journal of Finance","volume":"79 2","pages":"843-902"},"PeriodicalIF":7.6000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring “Dark Matter” in Asset Pricing Models\",\"authors\":\"HUI CHEN,&nbsp;WINSTON WEI DOU,&nbsp;LEONID KOGAN\",\"doi\":\"10.1111/jofi.13317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark-matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark-matter measure indicates that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models.</p></div>\",\"PeriodicalId\":15753,\"journal\":{\"name\":\"Journal of Finance\",\"volume\":\"79 2\",\"pages\":\"843-902\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jofi.13317\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jofi.13317","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们通过量化有关基本动态的交叉方程限制的额外信息量,正式确定了资产定价模型中的 "暗物质 "概念。暗物质度量可以捕捉到可能被错误规范化和不稳定的模型的脆弱程度:暗物质度量大,表明模型缺乏内部可反驳性(最优规范测试能力弱)和外部有效性(过拟合倾向高,样本外拟合能力差)。即使是复杂的动态结构模型,也能以较低的成本计算出该度量。为说明其应用,我们提供了将该指标应用于(时变)罕见灾害风险和长期风险模型的量化示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring “Dark Matter” in Asset Pricing Models

We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark-matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark-matter measure indicates that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Finance
Journal of Finance Multiple-
CiteScore
12.90
自引率
2.50%
发文量
88
期刊介绍: The Journal of Finance is a renowned publication that disseminates cutting-edge research across all major fields of financial inquiry. Widely regarded as the most cited academic journal in finance, each issue reaches over 8,000 academics, finance professionals, libraries, government entities, and financial institutions worldwide. Published bi-monthly, the journal serves as the official publication of The American Finance Association, the premier academic organization dedicated to advancing knowledge and understanding in financial economics. Join us in exploring the forefront of financial research and scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信