Marica Meroni, Emilia De Caro, Federica Chiappori, Miriam Longo, Erika Paolini, Ettore Mosca, Ivan Merelli, Rosa Lombardi, Sara Badiali, Marco Maggioni, Alessandro Orro, Alessandra Mezzelani, Luca Valenti, Anna Ludovica Fracanzani, Paola Dongiovanni
{"title":"肝脏和脂肪组织转录组分析凸显了重度 MASLD 中常见的自噬途径失调。","authors":"Marica Meroni, Emilia De Caro, Federica Chiappori, Miriam Longo, Erika Paolini, Ettore Mosca, Ivan Merelli, Rosa Lombardi, Sara Badiali, Marco Maggioni, Alessandro Orro, Alessandra Mezzelani, Luca Valenti, Anna Ludovica Fracanzani, Paola Dongiovanni","doi":"10.1002/oby.23996","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly ramping up due to the spread of obesity, which is characterized by expanded and dysfunctional visceral adipose tissue (VAT). Previous studies have investigated the hepatic transcriptome across MASLD, whereas few studies have focused on VAT.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We performed RNA sequencing in 167 hepatic samples from patients with obesity and in a subset of 79 matched VAT samples. Circulating cathepsin D (CTSD), a lysosomal protease, was measured by ELISA, whereas the autophagy-lysosomal pathway was assessed by Western blot in hepatic and VAT samples (<i>n</i> = 20).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Inflammation, extracellular matrix remodeling, and mitochondrial dysfunction were upregulated in severe MASLD in both tissues, whereas autophagy and oxidative phosphorylation were reduced. Tissue comparative analysis revealed 13 deregulated genes, including CTSD, which showed the most robust diagnostic accuracy in discriminating mild and severe MASLD. CTSD expression correlated with circulating protein, whose increase was further validated in 432 histologically characterized MASLD patients, showing a high accuracy in foreseeing severe liver injury. In addition, the assessment of serum CTSD increased the performance of fibrosis 4 in diagnosing advanced disease.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>By comparing the hepatic and VAT transcriptome during MASLD, we refined the concept by which CTSD may represent a potential biomarker of severe disease.</p>\n </section>\n </div>","PeriodicalId":215,"journal":{"name":"Obesity","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/oby.23996","citationCount":"0","resultStr":"{\"title\":\"Hepatic and adipose tissue transcriptome analysis highlights a commonly deregulated autophagic pathway in severe MASLD\",\"authors\":\"Marica Meroni, Emilia De Caro, Federica Chiappori, Miriam Longo, Erika Paolini, Ettore Mosca, Ivan Merelli, Rosa Lombardi, Sara Badiali, Marco Maggioni, Alessandro Orro, Alessandra Mezzelani, Luca Valenti, Anna Ludovica Fracanzani, Paola Dongiovanni\",\"doi\":\"10.1002/oby.23996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly ramping up due to the spread of obesity, which is characterized by expanded and dysfunctional visceral adipose tissue (VAT). Previous studies have investigated the hepatic transcriptome across MASLD, whereas few studies have focused on VAT.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We performed RNA sequencing in 167 hepatic samples from patients with obesity and in a subset of 79 matched VAT samples. Circulating cathepsin D (CTSD), a lysosomal protease, was measured by ELISA, whereas the autophagy-lysosomal pathway was assessed by Western blot in hepatic and VAT samples (<i>n</i> = 20).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Inflammation, extracellular matrix remodeling, and mitochondrial dysfunction were upregulated in severe MASLD in both tissues, whereas autophagy and oxidative phosphorylation were reduced. Tissue comparative analysis revealed 13 deregulated genes, including CTSD, which showed the most robust diagnostic accuracy in discriminating mild and severe MASLD. CTSD expression correlated with circulating protein, whose increase was further validated in 432 histologically characterized MASLD patients, showing a high accuracy in foreseeing severe liver injury. In addition, the assessment of serum CTSD increased the performance of fibrosis 4 in diagnosing advanced disease.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>By comparing the hepatic and VAT transcriptome during MASLD, we refined the concept by which CTSD may represent a potential biomarker of severe disease.</p>\\n </section>\\n </div>\",\"PeriodicalId\":215,\"journal\":{\"name\":\"Obesity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/oby.23996\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Obesity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/oby.23996\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obesity","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/oby.23996","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Hepatic and adipose tissue transcriptome analysis highlights a commonly deregulated autophagic pathway in severe MASLD
Objective
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly ramping up due to the spread of obesity, which is characterized by expanded and dysfunctional visceral adipose tissue (VAT). Previous studies have investigated the hepatic transcriptome across MASLD, whereas few studies have focused on VAT.
Methods
We performed RNA sequencing in 167 hepatic samples from patients with obesity and in a subset of 79 matched VAT samples. Circulating cathepsin D (CTSD), a lysosomal protease, was measured by ELISA, whereas the autophagy-lysosomal pathway was assessed by Western blot in hepatic and VAT samples (n = 20).
Results
Inflammation, extracellular matrix remodeling, and mitochondrial dysfunction were upregulated in severe MASLD in both tissues, whereas autophagy and oxidative phosphorylation were reduced. Tissue comparative analysis revealed 13 deregulated genes, including CTSD, which showed the most robust diagnostic accuracy in discriminating mild and severe MASLD. CTSD expression correlated with circulating protein, whose increase was further validated in 432 histologically characterized MASLD patients, showing a high accuracy in foreseeing severe liver injury. In addition, the assessment of serum CTSD increased the performance of fibrosis 4 in diagnosing advanced disease.
Conclusions
By comparing the hepatic and VAT transcriptome during MASLD, we refined the concept by which CTSD may represent a potential biomarker of severe disease.
期刊介绍:
Obesity is the official journal of The Obesity Society and is the premier source of information for increasing knowledge, fostering translational research from basic to population science, and promoting better treatment for people with obesity. Obesity publishes important peer-reviewed research and cutting-edge reviews, commentaries, and public health and medical developments.