用于空间转录组学细胞聚类的新型变量邻域搜索法

GigaByte (Hong Kong, China) Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI:10.46471/gigabyte.109
Aleksandra Djordjevic, Junhua Li, Shuangsang Fang, Lei Cao, Marija Ivanovic
{"title":"用于空间转录组学细胞聚类的新型变量邻域搜索法","authors":"Aleksandra Djordjevic, Junhua Li, Shuangsang Fang, Lei Cao, Marija Ivanovic","doi":"10.46471/gigabyte.109","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS) metaheuristic. The purpose of this method is to cluster cells based on both gene expression and spatial coordinates. Initially, we confronted this clustering challenge as an Integer Linear Programming minimization problem. Our approach introduced a novel model based on the VNS technique, demonstrating the efficacy in navigating the complexities of cell clustering. Notably, our method extends beyond conventional cell-type clustering to spatial domain clustering. This adaptability enables our algorithm to orchestrate clusters based on information gleaned from gene expression matrices and spatial coordinates. Our validation showed the superior performance of our method when compared to existing techniques. Our approach advances current clustering methodologies and can potentially be applied to several fields, from biomedical research to spatial data analysis.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte109"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910296/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel variable neighborhood search approach for cell clustering for spatial transcriptomics.\",\"authors\":\"Aleksandra Djordjevic, Junhua Li, Shuangsang Fang, Lei Cao, Marija Ivanovic\",\"doi\":\"10.46471/gigabyte.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS) metaheuristic. The purpose of this method is to cluster cells based on both gene expression and spatial coordinates. Initially, we confronted this clustering challenge as an Integer Linear Programming minimization problem. Our approach introduced a novel model based on the VNS technique, demonstrating the efficacy in navigating the complexities of cell clustering. Notably, our method extends beyond conventional cell-type clustering to spatial domain clustering. This adaptability enables our algorithm to orchestrate clusters based on information gleaned from gene expression matrices and spatial coordinates. Our validation showed the superior performance of our method when compared to existing techniques. Our approach advances current clustering methodologies and can potentially be applied to several fields, from biomedical research to spatial data analysis.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用可变邻域搜索(VNS)元启发式进行细胞聚类的新方法。这种方法的目的是根据基因表达和空间坐标对细胞进行聚类。起初,我们将这一聚类难题视为整数线性规划最小化问题。我们的方法在 VNS 技术的基础上引入了一个新模型,证明了它在驾驭复杂的细胞聚类方面的功效。值得注意的是,我们的方法已从传统的细胞类型聚类扩展到空间领域聚类。这种适应性使我们的算法能够根据从基因表达矩阵和空间坐标中收集到的信息协调聚类。我们的验证结果表明,与现有技术相比,我们的方法性能优越。我们的方法推进了当前的聚类方法,有可能应用于从生物医学研究到空间数据分析等多个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel variable neighborhood search approach for cell clustering for spatial transcriptomics.

This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS) metaheuristic. The purpose of this method is to cluster cells based on both gene expression and spatial coordinates. Initially, we confronted this clustering challenge as an Integer Linear Programming minimization problem. Our approach introduced a novel model based on the VNS technique, demonstrating the efficacy in navigating the complexities of cell clustering. Notably, our method extends beyond conventional cell-type clustering to spatial domain clustering. This adaptability enables our algorithm to orchestrate clusters based on information gleaned from gene expression matrices and spatial coordinates. Our validation showed the superior performance of our method when compared to existing techniques. Our approach advances current clustering methodologies and can potentially be applied to several fields, from biomedical research to spatial data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信