{"title":"Mdpg:基于病人知识图谱的新型多疾病诊断预测方法。","authors":"Weiguang Wang, Yingying Feng, Haiyan Zhao, Xin Wang, Ruikai Cai, Wei Cai, Xia Zhang","doi":"10.1007/s13755-024-00278-7","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnosis prediction, a key factor in enhancing healthcare efficiency, remains a focal point in clinical decision support research. However, the time-series, sparse and multi-noise characteristics of electronic health record (EHR) data make it a great challenge. Existing methods commonly address these issues using RNNs and incorporating medical prior knowledge from medical knowledge bases, but they neglect the local spatial characteristics and spatial-temporal correlation of the data. Consequently, we propose MDPG, a diagnosis prediction model based on patient knowledge graphs. Initially, we represent the electronic visit records of patients as a patient-centered temporal knowledge graph, capturing the local spatial structure and temporal characteristics of the visit information. Subsequently, we design the spatial graph convolution block, temporal self-attention block, and spatial-temporal synchronous graph convolution block to capture the spatial, temporal, and spatial-temporal correlations embedded in them, respectively. Ultimately, we accomplish the prediction of patients' future states through multi-label classification. We conduct comprehensive experiments on two real-world datasets independently and evaluate the results using visit-level precision@k and code-level accuracy@k metrics. The experimental results demonstrate that MDPG outperforms all baseline models, yielding the best performance.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"15"},"PeriodicalIF":4.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908733/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mdpg: a novel multi-disease diagnosis prediction method based on patient knowledge graphs.\",\"authors\":\"Weiguang Wang, Yingying Feng, Haiyan Zhao, Xin Wang, Ruikai Cai, Wei Cai, Xia Zhang\",\"doi\":\"10.1007/s13755-024-00278-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diagnosis prediction, a key factor in enhancing healthcare efficiency, remains a focal point in clinical decision support research. However, the time-series, sparse and multi-noise characteristics of electronic health record (EHR) data make it a great challenge. Existing methods commonly address these issues using RNNs and incorporating medical prior knowledge from medical knowledge bases, but they neglect the local spatial characteristics and spatial-temporal correlation of the data. Consequently, we propose MDPG, a diagnosis prediction model based on patient knowledge graphs. Initially, we represent the electronic visit records of patients as a patient-centered temporal knowledge graph, capturing the local spatial structure and temporal characteristics of the visit information. Subsequently, we design the spatial graph convolution block, temporal self-attention block, and spatial-temporal synchronous graph convolution block to capture the spatial, temporal, and spatial-temporal correlations embedded in them, respectively. Ultimately, we accomplish the prediction of patients' future states through multi-label classification. We conduct comprehensive experiments on two real-world datasets independently and evaluate the results using visit-level precision@k and code-level accuracy@k metrics. The experimental results demonstrate that MDPG outperforms all baseline models, yielding the best performance.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"12 1\",\"pages\":\"15\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-024-00278-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00278-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Mdpg: a novel multi-disease diagnosis prediction method based on patient knowledge graphs.
Diagnosis prediction, a key factor in enhancing healthcare efficiency, remains a focal point in clinical decision support research. However, the time-series, sparse and multi-noise characteristics of electronic health record (EHR) data make it a great challenge. Existing methods commonly address these issues using RNNs and incorporating medical prior knowledge from medical knowledge bases, but they neglect the local spatial characteristics and spatial-temporal correlation of the data. Consequently, we propose MDPG, a diagnosis prediction model based on patient knowledge graphs. Initially, we represent the electronic visit records of patients as a patient-centered temporal knowledge graph, capturing the local spatial structure and temporal characteristics of the visit information. Subsequently, we design the spatial graph convolution block, temporal self-attention block, and spatial-temporal synchronous graph convolution block to capture the spatial, temporal, and spatial-temporal correlations embedded in them, respectively. Ultimately, we accomplish the prediction of patients' future states through multi-label classification. We conduct comprehensive experiments on two real-world datasets independently and evaluate the results using visit-level precision@k and code-level accuracy@k metrics. The experimental results demonstrate that MDPG outperforms all baseline models, yielding the best performance.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.