蜱传脑炎病毒作为病原体,通过蜱单独传播或与博氏包虫病和噬细胞阿纳疟原虫共同传播,改变人体血液中的脂质代谢。

IF 9 2区 医学 Q1 CELL BIOLOGY
Marta Dobrzyńska, Anna Moniuszko-Malinowska, Piotr Radziwon, Sławomir Pancewicz, Agnieszka Gęgotek, Elżbieta Skrzydlewska
{"title":"蜱传脑炎病毒作为病原体,通过蜱单独传播或与博氏包虫病和噬细胞阿纳疟原虫共同传播,改变人体血液中的脂质代谢。","authors":"Marta Dobrzyńska, Anna Moniuszko-Malinowska, Piotr Radziwon, Sławomir Pancewicz, Agnieszka Gęgotek, Elżbieta Skrzydlewska","doi":"10.1186/s12929-024-01016-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy.</p><p><strong>Methods: </strong>The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA).</p><p><strong>Results: </strong>The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment.</p><p><strong>Conclusion: </strong>Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"28"},"PeriodicalIF":9.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tick-borne encephalitis virus transmitted singly and in duo with Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum bacteria by ticks as pathogens modifying lipid metabolism in human blood.\",\"authors\":\"Marta Dobrzyńska, Anna Moniuszko-Malinowska, Piotr Radziwon, Sławomir Pancewicz, Agnieszka Gęgotek, Elżbieta Skrzydlewska\",\"doi\":\"10.1186/s12929-024-01016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy.</p><p><strong>Methods: </strong>The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA).</p><p><strong>Results: </strong>The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment.</p><p><strong>Conclusion: </strong>Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.</p>\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":\"31 1\",\"pages\":\"28\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-024-01016-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01016-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:蜱虫是各种病原体的载体,包括引起蜱传脑炎的蜱传脑炎病毒(TBE)和引起病毒-细菌混合感染(TBE + LB/HGA)的细菌(如晚期鲍曼不动杆菌(Borrelia burgdorferi sensu lato)和噬胞嗜血杆菌(Anaplasma phagocytophilum)),这给诊断和治疗带来了难题。由于这些感染通常伴有炎症和氧化应激,导致包括磷脂在内的代谢改变,因此本研究旨在评估药物治疗前后 TBE 和 TBE + LB/HGA 患者血浆中多不饱和脂肪酸及其代谢(ROS 和酶依赖性)产物的水平:用2,20-偶氮-双-3-乙基苯并噻唑啉-6-磺酸测定总抗氧化状态。采用气相色谱法分析磷脂和游离脂肪酸。通过测量小分子量活性醛、丙二醛和神经前列素来估计脂质过氧化情况。活性醛采用气相色谱-质谱法测定。用分光光度法检测酶的活性。使用岛津 8060 三重四极杆系统与电喷雾离子源耦合的岛津超高效液相色谱(UPLC)系统对内源性大麻素和二十烷酸进行了分析。使用酶联免疫吸附试验(ELISA)测量受体表达:结果:感染导致的抗氧化状态降低伴随着TBE中磷脂花生四烯酸(AA)和二十二碳六烯酸(DHA)水平的降低,合并感染时DHA水平的升高和TBE中游离DHA水平的升高以及脂质过氧化产物水平的升高。磷脂和游离 PUFAs 代谢酶的活性增强提高了内源性大麻素和二十酸的水平,而 15-PGJ2 和 PGE2 的降低则伴随着药物治疗前粒细胞受体的激活,治疗后才趋于正常:结论:由于传统的药物治疗无法预防磷脂代谢紊乱,因此建议使用抗氧化剂辅助治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tick-borne encephalitis virus transmitted singly and in duo with Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum bacteria by ticks as pathogens modifying lipid metabolism in human blood.

Background: Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy.

Methods: The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA).

Results: The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment.

Conclusion: Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信