阉牛膳食补锌可调节循环免疫细胞中的可变锌浓度和锌转运体基因表达。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biological Trace Element Research Pub Date : 2024-12-01 Epub Date: 2024-03-05 DOI:10.1007/s12011-024-04123-6
Carlos E Franco, Emma L Rients, Fabian E Diaz, Stephanie L Hansen, Jodi L McGill
{"title":"阉牛膳食补锌可调节循环免疫细胞中的可变锌浓度和锌转运体基因表达。","authors":"Carlos E Franco, Emma L Rients, Fabian E Diaz, Stephanie L Hansen, Jodi L McGill","doi":"10.1007/s12011-024-04123-6","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"5489-5501"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502596/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dietary Zinc Supplementation in Steers Modulates Labile Zinc Concentration and Zinc Transporter Gene Expression in Circulating Immune Cells.\",\"authors\":\"Carlos E Franco, Emma L Rients, Fabian E Diaz, Stephanie L Hansen, Jodi L McGill\",\"doi\":\"10.1007/s12011-024-04123-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"5489-5501\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502596/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04123-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04123-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

锌(Zn)对免疫功能至关重要,犊牛轻微缺锌会导致生长不达标和疾病易感性增加。然而,与铜等其他微量元素相比,锌的组织浓度在补充或轻微缺乏的情况下不会轻易发生变化。因此,评估锌的状况仍然具有挑战性。锌转运体对维持细胞内锌平衡至关重要,它们的表达可显示动物体内锌状态的变化。在此,我们研究了日粮锌补充剂对从饲养母牛体内分离出的循环免疫细胞中的易变锌浓度和锌转运体基因表达的影响。将 18 头安格斯杂交母牛(261 ± 14 千克)按体重分群,并随机分配到两种日粮处理中:对照日粮(58 毫克锌/千克 DM,不补充锌)或对照加 150 毫克锌/千克 DM(HiZn;总计 207 毫克锌/千克 DM)。33 天后,补锌增加了单核细胞、粒细胞和 CD4 T 细胞中的易变锌浓度(以 FluoZin-3 荧光表示)(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dietary Zinc Supplementation in Steers Modulates Labile Zinc Concentration and Zinc Transporter Gene Expression in Circulating Immune Cells.

Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信