利用拉曼光谱和监督机器学习预测硅酸盐玻璃地球化学:部分最小平方应用于无定形拉曼光谱。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Applied Spectroscopy Pub Date : 2024-05-01 Epub Date: 2024-03-05 DOI:10.1177/00037028241234681
Blake O LaDouceur, Molly McCanta, Bhavya Sharma, Grace Sarabia, Natalie E Dunn, M Darby Dyar
{"title":"利用拉曼光谱和监督机器学习预测硅酸盐玻璃地球化学:部分最小平方应用于无定形拉曼光谱。","authors":"Blake O LaDouceur, Molly McCanta, Bhavya Sharma, Grace Sarabia, Natalie E Dunn, M Darby Dyar","doi":"10.1177/00037028241234681","DOIUrl":null,"url":null,"abstract":"<p><p>Here, Raman spectroscopy is used to develop a univariate partial least squares (PLS) calibration capable of quantifying geochemistry in synthetic and natural silicate glass samples. The calibration yields eight oxide-specific models that allow predictions of silicon dioxide (SiO<sub>2</sub>), sodium oxide (Na<sub>2</sub>O), potassium oxide (K<sub>2</sub>O), calcium oxide (CaO), titanium dioxide (TiO<sub>2</sub>), aluminum oxide (Al<sub>2</sub>O<sub>3</sub>), ferrous oxide (FeO<sub>T</sub>), and magnesium oxide (MgO) (wt%) in glasses spanning a wide range of compositions, while also providing correlation-coefficient matrices that highlight the importance of specific Raman channels in the regression of a particular oxide. The PLS suite is trained on 48 of the 69 total glasses, and tested against 21 validation samples (i.e., held out of training). Trends in root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP) model accuracy metrics are investigated to uncover the efficacy of utilizing multivariate analysis for such Raman data and are contextualized against recently produced strategies. The technique yields an average root mean of calibration (∼2.4 wt%), cross-validation (∼ 2.9 wt%), prediction (∼ 2.6 wt%), and normalized variance (∼ 28%). Raman band positional shifts are also mapped against underlying chemical variations; with major influences arising primarily as a function of overall oxidation state and silica concentration: via ferric cation (Fe<sup>3+</sup>)/ferrous cation (Fe<sup>2+</sup>) ratios and SiO<sub>2</sub> (wt%). The algorithm is further validated preliminarily against a separate external set of 11 natural basaltic glasses to unravel the limitations of the synthetic models on natural samples, and to determine the suitability of \"universal\" Raman-model applications in scenarios where prior chemical contextualization of the target sample is possible. This study represents the first time Raman spectra of amorphous silicates have been paired with PLS, offering a foundation for future improvements utilizing these systems.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Silicate Glass Geochemistry Using Raman Spectroscopy and Supervised Machine Learning: Partial Least Square Applications to Amorphous Raman Spectra.\",\"authors\":\"Blake O LaDouceur, Molly McCanta, Bhavya Sharma, Grace Sarabia, Natalie E Dunn, M Darby Dyar\",\"doi\":\"10.1177/00037028241234681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, Raman spectroscopy is used to develop a univariate partial least squares (PLS) calibration capable of quantifying geochemistry in synthetic and natural silicate glass samples. The calibration yields eight oxide-specific models that allow predictions of silicon dioxide (SiO<sub>2</sub>), sodium oxide (Na<sub>2</sub>O), potassium oxide (K<sub>2</sub>O), calcium oxide (CaO), titanium dioxide (TiO<sub>2</sub>), aluminum oxide (Al<sub>2</sub>O<sub>3</sub>), ferrous oxide (FeO<sub>T</sub>), and magnesium oxide (MgO) (wt%) in glasses spanning a wide range of compositions, while also providing correlation-coefficient matrices that highlight the importance of specific Raman channels in the regression of a particular oxide. The PLS suite is trained on 48 of the 69 total glasses, and tested against 21 validation samples (i.e., held out of training). Trends in root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP) model accuracy metrics are investigated to uncover the efficacy of utilizing multivariate analysis for such Raman data and are contextualized against recently produced strategies. The technique yields an average root mean of calibration (∼2.4 wt%), cross-validation (∼ 2.9 wt%), prediction (∼ 2.6 wt%), and normalized variance (∼ 28%). Raman band positional shifts are also mapped against underlying chemical variations; with major influences arising primarily as a function of overall oxidation state and silica concentration: via ferric cation (Fe<sup>3+</sup>)/ferrous cation (Fe<sup>2+</sup>) ratios and SiO<sub>2</sub> (wt%). The algorithm is further validated preliminarily against a separate external set of 11 natural basaltic glasses to unravel the limitations of the synthetic models on natural samples, and to determine the suitability of \\\"universal\\\" Raman-model applications in scenarios where prior chemical contextualization of the target sample is possible. This study represents the first time Raman spectra of amorphous silicates have been paired with PLS, offering a foundation for future improvements utilizing these systems.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241234681\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241234681","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文利用拉曼光谱技术开发了一种单变量偏最小二乘法 (PLS) 定标方法,能够量化合成和天然硅酸盐玻璃样品中的地球化学成分。该定标产生了八个特定于氧化物的模型,可预测二氧化硅(SiO2)、氧化钠(Na2O)、氧化钾(K2O)、氧化钙(CaO)、二氧化钛(TiO2)、氧化铝(Al2O3)、氧化亚铁(FeOT)和氧化镁(MgO)、和氧化镁(MgO)(重量百分比),同时还提供了相关系数矩阵,以突出特定拉曼通道在特定氧化物回归中的重要性。PLS 套件在总共 69 种玻璃中的 48 种玻璃上进行了训练,并根据 21 种验证样本(即训练之外的样本)进行了测试。研究了校准均方根误差 (RMSEC)、交叉验证均方根误差 (RMSECV) 和预测均方根误差 (RMSEP) 模型准确度指标的趋势,以揭示对此类拉曼数据使用多元分析的功效,并与最近产生的策略进行对比。该技术产生了校准(∼2.4 wt%)、交叉验证(∼2.9 wt%)、预测(∼2.6 wt%)和归一化方差(∼28%)的平均根平均值。拉曼光谱带位置偏移也与基本化学变化相关;主要影响因素是整体氧化态和二氧化硅浓度:铁阳离子 (Fe3+)/ 铁阳离子 (Fe2+) 比率和二氧化硅 (重量百分比)。该算法还针对 11 个天然玄武岩玻璃的独立外部集合进行了初步验证,以揭示合成模型在天然样品上的局限性,并确定 "通用 "拉曼模型在目标样品化学背景可能事先确定的情况下的应用适用性。这项研究首次将无定形硅酸盐的拉曼光谱与 PLS 配对,为今后利用这些系统进行改进奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Silicate Glass Geochemistry Using Raman Spectroscopy and Supervised Machine Learning: Partial Least Square Applications to Amorphous Raman Spectra.

Here, Raman spectroscopy is used to develop a univariate partial least squares (PLS) calibration capable of quantifying geochemistry in synthetic and natural silicate glass samples. The calibration yields eight oxide-specific models that allow predictions of silicon dioxide (SiO2), sodium oxide (Na2O), potassium oxide (K2O), calcium oxide (CaO), titanium dioxide (TiO2), aluminum oxide (Al2O3), ferrous oxide (FeOT), and magnesium oxide (MgO) (wt%) in glasses spanning a wide range of compositions, while also providing correlation-coefficient matrices that highlight the importance of specific Raman channels in the regression of a particular oxide. The PLS suite is trained on 48 of the 69 total glasses, and tested against 21 validation samples (i.e., held out of training). Trends in root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP) model accuracy metrics are investigated to uncover the efficacy of utilizing multivariate analysis for such Raman data and are contextualized against recently produced strategies. The technique yields an average root mean of calibration (∼2.4 wt%), cross-validation (∼ 2.9 wt%), prediction (∼ 2.6 wt%), and normalized variance (∼ 28%). Raman band positional shifts are also mapped against underlying chemical variations; with major influences arising primarily as a function of overall oxidation state and silica concentration: via ferric cation (Fe3+)/ferrous cation (Fe2+) ratios and SiO2 (wt%). The algorithm is further validated preliminarily against a separate external set of 11 natural basaltic glasses to unravel the limitations of the synthetic models on natural samples, and to determine the suitability of "universal" Raman-model applications in scenarios where prior chemical contextualization of the target sample is possible. This study represents the first time Raman spectra of amorphous silicates have been paired with PLS, offering a foundation for future improvements utilizing these systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信